Reliable numerical modelling of malaria propagation
Applications of Mathematics, Tome 63 (2018) no. 3, pp. 259-271.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate biological processes, particularly the propagation of malaria. Both the continuous and the numerical models on some fixed mesh should preserve the basic qualitative properties of the original phenomenon. Our main goal is to give the conditions for the discrete (numerical) models of the malaria phenomena under which they possess some given qualitative property, namely, to be between zero and one. The conditions which guarantee this requirement are related to the time-discretization step-size. We give a sufficient condition for some explicit methods. For implicit methods we prove that the above property holds unconditionally.
DOI : 10.21136/AM.2018.0098-18
Classification : 34C60, 35Q92, 65L06, 65M06, 92D30
Keywords: epidemic model; qualitative propertie; non-negativity; finite difference method
@article{10_21136_AM_2018_0098_18,
     author = {Farag\'o, Istv\'an and Mincsovics, Mikl\'os Emil and Mosleh, Rahele},
     title = {Reliable numerical modelling of malaria propagation},
     journal = {Applications of Mathematics},
     pages = {259--271},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     doi = {10.21136/AM.2018.0098-18},
     mrnumber = {3833660},
     zbl = {06945732},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0098-18/}
}
TY  - JOUR
AU  - Faragó, István
AU  - Mincsovics, Miklós Emil
AU  - Mosleh, Rahele
TI  - Reliable numerical modelling of malaria propagation
JO  - Applications of Mathematics
PY  - 2018
SP  - 259
EP  - 271
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0098-18/
DO  - 10.21136/AM.2018.0098-18
LA  - en
ID  - 10_21136_AM_2018_0098_18
ER  - 
%0 Journal Article
%A Faragó, István
%A Mincsovics, Miklós Emil
%A Mosleh, Rahele
%T Reliable numerical modelling of malaria propagation
%J Applications of Mathematics
%D 2018
%P 259-271
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0098-18/
%R 10.21136/AM.2018.0098-18
%G en
%F 10_21136_AM_2018_0098_18
Faragó, István; Mincsovics, Miklós Emil; Mosleh, Rahele. Reliable numerical modelling of malaria propagation. Applications of Mathematics, Tome 63 (2018) no. 3, pp. 259-271. doi : 10.21136/AM.2018.0098-18. http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0098-18/

Cité par Sources :