Explicit estimation of error constants appearing in non-conforming linear triangular finite element method
Applications of Mathematics, Tome 63 (2018) no. 4, pp. 381-397
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The non-conforming linear ($P_1$) triangular FEM can be viewed as a kind of the discontinuous Galerkin method, and is attractive in both the theoretical and practical purposes. Since various error constants must be quantitatively evaluated for its accurate a priori and a posteriori error estimates, we derive their theoretical upper bounds and some computational results. In particular, the Babuška-Aziz maximum angle condition is required just as in the case of the conforming $P_1$ triangle. Some applications and numerical results are also included to see the validity and effectiveness of our analysis.
DOI :
10.21136/AM.2018.0097-18
Classification :
65N15, 65N30
Keywords: FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element
Keywords: FEM; non-conforming linear triangle; a priori error estimate; a posteriori error estimate; error constant; Raviart-Thomas element
@article{10_21136_AM_2018_0097_18,
author = {Liu, Xuefeng and Kikuchi, Fumio},
title = {Explicit estimation of error constants appearing in non-conforming linear triangular finite element method},
journal = {Applications of Mathematics},
pages = {381--397},
publisher = {mathdoc},
volume = {63},
number = {4},
year = {2018},
doi = {10.21136/AM.2018.0097-18},
mrnumber = {3842959},
zbl = {06945738},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0097-18/}
}
TY - JOUR AU - Liu, Xuefeng AU - Kikuchi, Fumio TI - Explicit estimation of error constants appearing in non-conforming linear triangular finite element method JO - Applications of Mathematics PY - 2018 SP - 381 EP - 397 VL - 63 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0097-18/ DO - 10.21136/AM.2018.0097-18 LA - en ID - 10_21136_AM_2018_0097_18 ER -
%0 Journal Article %A Liu, Xuefeng %A Kikuchi, Fumio %T Explicit estimation of error constants appearing in non-conforming linear triangular finite element method %J Applications of Mathematics %D 2018 %P 381-397 %V 63 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2018.0097-18/ %R 10.21136/AM.2018.0097-18 %G en %F 10_21136_AM_2018_0097_18
Liu, Xuefeng; Kikuchi, Fumio. Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Applications of Mathematics, Tome 63 (2018) no. 4, pp. 381-397. doi: 10.21136/AM.2018.0097-18
Cité par Sources :