Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems
Applications of Mathematics, Tome 62 (2017) no. 1, pp. 15-36
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Numerical solution of fractional order diffusion problems with homogeneous Dirichlet boundary conditions is investigated on a square domain. An appropriate extension is applied to have a well-posed problem on $\mathbb {R}^2$ and the solution on the square is regarded as a localization. For the numerical approximation a finite difference method is applied combined with the matrix transformation method. Here the discrete fractional Laplacian is approximated with a matrix power instead of computing the complicated approximations of fractional order derivatives. The spatial convergence of this method is proved and demonstrated by some numerical experiments.
DOI :
10.21136/AM.2017.0385-15
Classification :
35R11, 65M06, 65M12
Keywords: fractional diffusion problem; finite differences; matrix transformation method
Keywords: fractional diffusion problem; finite differences; matrix transformation method
@article{10_21136_AM_2017_0385_15,
author = {Szekeres, B\'ela J. and Izs\'ak, Ferenc},
title = {Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems},
journal = {Applications of Mathematics},
pages = {15--36},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {2017},
doi = {10.21136/AM.2017.0385-15},
mrnumber = {3615476},
zbl = {06738479},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0385-15/}
}
TY - JOUR AU - Szekeres, Béla J. AU - Izsák, Ferenc TI - Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems JO - Applications of Mathematics PY - 2017 SP - 15 EP - 36 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0385-15/ DO - 10.21136/AM.2017.0385-15 LA - en ID - 10_21136_AM_2017_0385_15 ER -
%0 Journal Article %A Szekeres, Béla J. %A Izsák, Ferenc %T Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems %J Applications of Mathematics %D 2017 %P 15-36 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0385-15/ %R 10.21136/AM.2017.0385-15 %G en %F 10_21136_AM_2017_0385_15
Szekeres, Béla J.; Izsák, Ferenc. Convergence of the matrix transformation method for the finite difference approximation of fractional order diffusion problems. Applications of Mathematics, Tome 62 (2017) no. 1, pp. 15-36. doi: 10.21136/AM.2017.0385-15
Cité par Sources :