Time discretizations for evolution problems
Applications of Mathematics, Tome 62 (2017) no. 2, pp. 135-169.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed.
DOI : 10.21136/AM.2017.0268-16
Classification : 65J08, 65J10, 65L04, 65L20
Keywords: time discretizations; parabolic PDEs; stiff ODEs; Runge-Kutta methods; multi-step methods
@article{10_21136_AM_2017_0268_16,
     author = {Vlas\'ak, Miloslav},
     title = {Time discretizations for evolution problems},
     journal = {Applications of Mathematics},
     pages = {135--169},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {2017},
     doi = {10.21136/AM.2017.0268-16},
     mrnumber = {3647039},
     zbl = {06738486},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0268-16/}
}
TY  - JOUR
AU  - Vlasák, Miloslav
TI  - Time discretizations for evolution problems
JO  - Applications of Mathematics
PY  - 2017
SP  - 135
EP  - 169
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0268-16/
DO  - 10.21136/AM.2017.0268-16
LA  - en
ID  - 10_21136_AM_2017_0268_16
ER  - 
%0 Journal Article
%A Vlasák, Miloslav
%T Time discretizations for evolution problems
%J Applications of Mathematics
%D 2017
%P 135-169
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0268-16/
%R 10.21136/AM.2017.0268-16
%G en
%F 10_21136_AM_2017_0268_16
Vlasák, Miloslav. Time discretizations for evolution problems. Applications of Mathematics, Tome 62 (2017) no. 2, pp. 135-169. doi : 10.21136/AM.2017.0268-16. http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0268-16/

Cité par Sources :