Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error
Applications of Mathematics, Tome 62 (2017) no. 5, pp. 433-457
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete $H^1$ norm best approximation error estimates for $H^2$ functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate on an example of a special family of distorted triangulations that this dependence is essential, and due to the deterioration of the consistency error. We also provide examples of sequences of triangulations such that the nonconforming P1 Galerkin projections for a Poisson problem with polynomial solution do not converge or converge at arbitrarily low speed. The results complement analogous findings for conforming P1 finite elements.
DOI :
10.21136/AM.2017.0150-17
Classification :
65N12, 65N15, 65N30
Keywords: nonconforming P1 element; lowest order Raviart-Thomas element; discrete energy norm estimate; divergence of finite element method; maximum angle condition; distorted triangulation
Keywords: nonconforming P1 element; lowest order Raviart-Thomas element; discrete energy norm estimate; divergence of finite element method; maximum angle condition; distorted triangulation
@article{10_21136_AM_2017_0150_17,
author = {Oswald, Peter},
title = {Nonconforming {P1} elements on distorted triangulations: {Lower} bounds for the discrete energy norm error},
journal = {Applications of Mathematics},
pages = {433--457},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {2017},
doi = {10.21136/AM.2017.0150-17},
mrnumber = {3722898},
zbl = {06819515},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0150-17/}
}
TY - JOUR AU - Oswald, Peter TI - Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error JO - Applications of Mathematics PY - 2017 SP - 433 EP - 457 VL - 62 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0150-17/ DO - 10.21136/AM.2017.0150-17 LA - en ID - 10_21136_AM_2017_0150_17 ER -
%0 Journal Article %A Oswald, Peter %T Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error %J Applications of Mathematics %D 2017 %P 433-457 %V 62 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0150-17/ %R 10.21136/AM.2017.0150-17 %G en %F 10_21136_AM_2017_0150_17
Oswald, Peter. Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error. Applications of Mathematics, Tome 62 (2017) no. 5, pp. 433-457. doi: 10.21136/AM.2017.0150-17
Cité par Sources :