A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
Applications of Mathematics, Tome 62 (2017) no. 3, pp. 243-267.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.
DOI : 10.21136/AM.2017.0115-16
Classification : 35J25, 65N15, 65N25, 65N30
Keywords: discontinuous Galerkin method; Steklov eigenvalue problem; a posteriori error estimate
@article{10_21136_AM_2017_0115_16,
     author = {Zeng, Yuping and Wang, Feng},
     title = {A posteriori error estimates for a discontinuous {Galerkin} approximation of {Steklov} eigenvalue problems},
     journal = {Applications of Mathematics},
     pages = {243--267},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {2017},
     doi = {10.21136/AM.2017.0115-16},
     mrnumber = {3661039},
     zbl = {06738492},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/}
}
TY  - JOUR
AU  - Zeng, Yuping
AU  - Wang, Feng
TI  - A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
JO  - Applications of Mathematics
PY  - 2017
SP  - 243
EP  - 267
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/
DO  - 10.21136/AM.2017.0115-16
LA  - en
ID  - 10_21136_AM_2017_0115_16
ER  - 
%0 Journal Article
%A Zeng, Yuping
%A Wang, Feng
%T A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
%J Applications of Mathematics
%D 2017
%P 243-267
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/
%R 10.21136/AM.2017.0115-16
%G en
%F 10_21136_AM_2017_0115_16
Zeng, Yuping; Wang, Feng. A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Applications of Mathematics, Tome 62 (2017) no. 3, pp. 243-267. doi : 10.21136/AM.2017.0115-16. http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/

Cité par Sources :