A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems
Applications of Mathematics, Tome 62 (2017) no. 3, pp. 243-267
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.
DOI :
10.21136/AM.2017.0115-16
Classification :
35J25, 65N15, 65N25, 65N30
Keywords: discontinuous Galerkin method; Steklov eigenvalue problem; a posteriori error estimate
Keywords: discontinuous Galerkin method; Steklov eigenvalue problem; a posteriori error estimate
@article{10_21136_AM_2017_0115_16,
author = {Zeng, Yuping and Wang, Feng},
title = {A posteriori error estimates for a discontinuous {Galerkin} approximation of {Steklov} eigenvalue problems},
journal = {Applications of Mathematics},
pages = {243--267},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {2017},
doi = {10.21136/AM.2017.0115-16},
mrnumber = {3661039},
zbl = {06738492},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/}
}
TY - JOUR AU - Zeng, Yuping AU - Wang, Feng TI - A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems JO - Applications of Mathematics PY - 2017 SP - 243 EP - 267 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/ DO - 10.21136/AM.2017.0115-16 LA - en ID - 10_21136_AM_2017_0115_16 ER -
%0 Journal Article %A Zeng, Yuping %A Wang, Feng %T A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems %J Applications of Mathematics %D 2017 %P 243-267 %V 62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0115-16/ %R 10.21136/AM.2017.0115-16 %G en %F 10_21136_AM_2017_0115_16
Zeng, Yuping; Wang, Feng. A posteriori error estimates for a discontinuous Galerkin approximation of Steklov eigenvalue problems. Applications of Mathematics, Tome 62 (2017) no. 3, pp. 243-267. doi: 10.21136/AM.2017.0115-16
Cité par Sources :