Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother
Applications of Mathematics, Tome 62 (2017) no. 1, pp. 49-73.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We extend the analysis of the recently proposed nonlinear EIS scheme applied to the partial eigenvalue problem. We address the case where the Rayleigh quotient iteration is used as the smoother on the fine-level. Unlike in our previous theoretical results, where the smoother given by the linear inverse power method is assumed, we prove nonlinear speed-up when the approximation becomes close to the exact solution. The speed-up is cubic. Unlike existent convergence estimates for the Rayleigh quotient iteration, our estimates take advantage of the powerful effect of the coarse-space.
DOI : 10.21136/AM.2017.0101-16
Classification : 65F15, 65N55
Keywords: nonlinear multigrid; exact interpolation scheme
@article{10_21136_AM_2017_0101_16,
     author = {Van\v{e}k, Petr and Pultarov\'a, Ivana},
     title = {Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and {Rayleigh} quotient iteration nonlinear smoother},
     journal = {Applications of Mathematics},
     pages = {49--73},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {2017},
     doi = {10.21136/AM.2017.0101-16},
     mrnumber = {3615478},
     zbl = {06738481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0101-16/}
}
TY  - JOUR
AU  - Vaněk, Petr
AU  - Pultarová, Ivana
TI  - Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother
JO  - Applications of Mathematics
PY  - 2017
SP  - 49
EP  - 73
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0101-16/
DO  - 10.21136/AM.2017.0101-16
LA  - en
ID  - 10_21136_AM_2017_0101_16
ER  - 
%0 Journal Article
%A Vaněk, Petr
%A Pultarová, Ivana
%T Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother
%J Applications of Mathematics
%D 2017
%P 49-73
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0101-16/
%R 10.21136/AM.2017.0101-16
%G en
%F 10_21136_AM_2017_0101_16
Vaněk, Petr; Pultarová, Ivana. Convergence theory for the exact interpolation scheme with approximation vector as the first column of the prolongator and Rayleigh quotient iteration nonlinear smoother. Applications of Mathematics, Tome 62 (2017) no. 1, pp. 49-73. doi : 10.21136/AM.2017.0101-16. http://geodesic.mathdoc.fr/articles/10.21136/AM.2017.0101-16/

Cité par Sources :