Numerical integration with weight functions $\cos kx$, $\sin kx$ on $[0, 2\pi/t]$, $t=1,2,\dots$
Applications of Mathematics, Tome 14 (1969) no. 3, pp. 179-194
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
The paper describes a numerical method for computation of integrals with weight functions cos $kx$, sin $kx$ ($k$-integer), and its convergence and the estimation of the remainder is investigated. Some weight coefficients of these formulae are tabulated and their application is demonstrated by numerical experiments.
The paper describes a numerical method for computation of integrals with weight functions cos $kx$, sin $kx$ ($k$-integer), and its convergence and the estimation of the remainder is investigated. Some weight coefficients of these formulae are tabulated and their application is demonstrated by numerical experiments.
@article{10_21136_AM_1969_103224,
author = {Miklo\v{s}ko, Jozef},
title = {Numerical integration with weight functions $\cos kx$, $\sin kx$ on $[0, 2\pi/t]$, $t=1,2,\dots$},
journal = {Applications of Mathematics},
pages = {179--194},
year = {1969},
volume = {14},
number = {3},
doi = {10.21136/AM.1969.103224},
mrnumber = {0246510},
zbl = {0172.19301},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1969.103224/}
}
TY - JOUR AU - Mikloško, Jozef TI - Numerical integration with weight functions $\cos kx$, $\sin kx$ on $[0, 2\pi/t]$, $t=1,2,\dots$ JO - Applications of Mathematics PY - 1969 SP - 179 EP - 194 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1969.103224/ DO - 10.21136/AM.1969.103224 LA - en ID - 10_21136_AM_1969_103224 ER -
%0 Journal Article %A Mikloško, Jozef %T Numerical integration with weight functions $\cos kx$, $\sin kx$ on $[0, 2\pi/t]$, $t=1,2,\dots$ %J Applications of Mathematics %D 1969 %P 179-194 %V 14 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1969.103224/ %R 10.21136/AM.1969.103224 %G en %F 10_21136_AM_1969_103224
Mikloško, Jozef. Numerical integration with weight functions $\cos kx$, $\sin kx$ on $[0, 2\pi/t]$, $t=1,2,\dots$. Applications of Mathematics, Tome 14 (1969) no. 3, pp. 179-194. doi: 10.21136/AM.1969.103224
Cité par Sources :