Mean-field limits of Riesz-type singular flows
Ars Inveniendi Analytica (2022)
Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
We provide a proof of mean-field convergence of first-order dissipative or
conservative dynamics of particles with Riesz-type singular interaction (the
model interaction is an inverse power $s$ of the distance for any $0$) when
assuming a certain regularity of the solutions to the limiting evolution
equations. It relies on a modulated-energy approach, as introduced in previous
works where it was restricted to the Coulomb and super-Coulombic cases. The
method is also capable of incorporating multiplicative noise of transport type
into the dynamics. It relies in extending functional inequalities of
arXiv:1803.08345, arXiv:2011.12180, arXiv:2003.11704 to more general
interactions, via a new, robust proof that exploits a certain commutator
structure.
@article{10_15781_nvv7_jy87,
author = {Quoc Hung Nguyen and Matthew Rosenzweig and Sylvia Serfaty},
title = {Mean-field limits of {Riesz-type} singular flows},
journal = {Ars Inveniendi Analytica},
publisher = {mathdoc},
year = {2022},
doi = {10.15781/nvv7-jy87},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/}
}
TY - JOUR AU - Quoc Hung Nguyen AU - Matthew Rosenzweig AU - Sylvia Serfaty TI - Mean-field limits of Riesz-type singular flows JO - Ars Inveniendi Analytica PY - 2022 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/ DO - 10.15781/nvv7-jy87 LA - en ID - 10_15781_nvv7_jy87 ER -
Quoc Hung Nguyen; Matthew Rosenzweig; Sylvia Serfaty. Mean-field limits of Riesz-type singular flows. Ars Inveniendi Analytica (2022). doi: 10.15781/nvv7-jy87
Cité par Sources :