Mean-field limits of Riesz-type singular flows
Ars Inveniendi Analytica (2022).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We provide a proof of mean-field convergence of first-order dissipative or conservative dynamics of particles with Riesz-type singular interaction (the model interaction is an inverse power $s$ of the distance for any $0$) when assuming a certain regularity of the solutions to the limiting evolution equations. It relies on a modulated-energy approach, as introduced in previous works where it was restricted to the Coulomb and super-Coulombic cases. The method is also capable of incorporating multiplicative noise of transport type into the dynamics. It relies in extending functional inequalities of arXiv:1803.08345, arXiv:2011.12180, arXiv:2003.11704 to more general interactions, via a new, robust proof that exploits a certain commutator structure.
Publié le :
DOI : 10.15781/nvv7-jy87
@article{10_15781_nvv7_jy87,
     author = {Quoc Hung Nguyen and Matthew Rosenzweig and Sylvia Serfaty},
     title = {Mean-field limits of {Riesz-type} singular flows},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2022},
     doi = {10.15781/nvv7-jy87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/}
}
TY  - JOUR
AU  - Quoc Hung Nguyen
AU  - Matthew Rosenzweig
AU  - Sylvia Serfaty
TI  - Mean-field limits of Riesz-type singular flows
JO  - Ars Inveniendi Analytica
PY  - 2022
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/
DO  - 10.15781/nvv7-jy87
LA  - en
ID  - 10_15781_nvv7_jy87
ER  - 
%0 Journal Article
%A Quoc Hung Nguyen
%A Matthew Rosenzweig
%A Sylvia Serfaty
%T Mean-field limits of Riesz-type singular flows
%J Ars Inveniendi Analytica
%D 2022
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/
%R 10.15781/nvv7-jy87
%G en
%F 10_15781_nvv7_jy87
Quoc Hung Nguyen; Matthew Rosenzweig; Sylvia Serfaty. Mean-field limits of Riesz-type singular flows. Ars Inveniendi Analytica (2022). doi : 10.15781/nvv7-jy87. http://geodesic.mathdoc.fr/articles/10.15781/nvv7-jy87/

Cité par Sources :