On the derivation of the homogeneous kinetic wave equation for a
nonlinear random matrix model
Ars Inveniendi Analytica (2023)
Cet article a éte moissonné depuis la source Ars Inveniendi Analytica website
We consider a nonlinear system of ODEs, where the underlying linear dynamics
are determined by a Hermitian random matrix ensemble. We prove that the leading
order dynamics in the weakly nonlinear, infinite volume limit are determined by
a solution to the corresponding kinetic wave equation on a non-trivial
timescale. Our proof relies on estimates for Haar-distributed unitary matrices
obtained from Weingarten calculus, which may be of independent interest.
@article{10_15781_kj6t_gd51,
author = {Guillaume Dubach and Pierre Germain and Benjamin Harrop-Griffiths},
title = {On the derivation of the homogeneous kinetic wave equation for a
nonlinear random matrix model},
journal = {Ars Inveniendi Analytica},
year = {2023},
doi = {10.15781/kj6t-gd51},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/kj6t-gd51/}
}
TY - JOUR AU - Guillaume Dubach AU - Pierre Germain AU - Benjamin Harrop-Griffiths TI - On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model JO - Ars Inveniendi Analytica PY - 2023 UR - http://geodesic.mathdoc.fr/articles/10.15781/kj6t-gd51/ DO - 10.15781/kj6t-gd51 LA - en ID - 10_15781_kj6t_gd51 ER -
%0 Journal Article %A Guillaume Dubach %A Pierre Germain %A Benjamin Harrop-Griffiths %T On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model %J Ars Inveniendi Analytica %D 2023 %U http://geodesic.mathdoc.fr/articles/10.15781/kj6t-gd51/ %R 10.15781/kj6t-gd51 %G en %F 10_15781_kj6t_gd51
Guillaume Dubach; Pierre Germain; Benjamin Harrop-Griffiths. On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model. Ars Inveniendi Analytica (2023). doi: 10.15781/kj6t-gd51
Cité par Sources :