A Liouville-type theorem for stable minimal hypersurfaces
Ars Inveniendi Analytica (2021).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We prove that if $M$ is a strictly stable complete minimal hypersurface in Euclidean space with finite density at infinity and which lies on one side of a minimal cylinder with cross-section a strictly stable area minimizing hypercone, then $M$ must be cylindrical. Applications will be given in the references [Sim20a], [Sim20b].
Publié le :
DOI : 10.15781/hk9g-zz18
@article{10_15781_hk9g_zz18,
     author = {Leon Simon},
     title = {A {Liouville-type} theorem for stable minimal hypersurfaces},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2021},
     doi = {10.15781/hk9g-zz18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/hk9g-zz18/}
}
TY  - JOUR
AU  - Leon Simon
TI  - A Liouville-type theorem for stable minimal hypersurfaces
JO  - Ars Inveniendi Analytica
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/hk9g-zz18/
DO  - 10.15781/hk9g-zz18
LA  - en
ID  - 10_15781_hk9g_zz18
ER  - 
%0 Journal Article
%A Leon Simon
%T A Liouville-type theorem for stable minimal hypersurfaces
%J Ars Inveniendi Analytica
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/hk9g-zz18/
%R 10.15781/hk9g-zz18
%G en
%F 10_15781_hk9g_zz18
Leon Simon. A Liouville-type theorem for stable minimal hypersurfaces. Ars Inveniendi Analytica (2021). doi : 10.15781/hk9g-zz18. http://geodesic.mathdoc.fr/articles/10.15781/hk9g-zz18/

Cité par Sources :