A Liouville-type theorem for stable minimal hypersurfaces
Ars Inveniendi Analytica (2021)
Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
We prove that if $M$ is a strictly stable complete minimal hypersurface in
Euclidean space with finite density at infinity and which lies on one side of a
minimal cylinder with cross-section a strictly stable area minimizing
hypercone, then $M$ must be cylindrical. Applications will be given in the
references [Sim20a], [Sim20b].
@article{10_15781_hk9g_zz18,
author = {Leon Simon},
title = {A {Liouville-type} theorem for stable minimal hypersurfaces},
journal = {Ars Inveniendi Analytica},
publisher = {mathdoc},
year = {2021},
doi = {10.15781/hk9g-zz18},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/hk9g-zz18/}
}
Leon Simon. A Liouville-type theorem for stable minimal hypersurfaces. Ars Inveniendi Analytica (2021). doi: 10.15781/hk9g-zz18
Cité par Sources :