Additive energy of regular measures in one and higher dimensions, and
the fractal uncertainty principle
Ars Inveniendi Analytica (2021)
Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
We obtain new bounds on the additive energy of (Ahlfors-David type) regular
measures in both one and higher dimensions, which implies expansion results for
sums and products of the associated regular sets, as well as more general
nonlinear functions of these sets. As a corollary of the higher-dimensional
results we obtain some new cases of the fractal uncertainty principle in odd
dimensions.
@article{10_15781_gw9q_k252,
author = {Laura Cladek and Terence Tao},
title = {Additive energy of regular measures in one and higher dimensions, and
the fractal uncertainty principle},
journal = {Ars Inveniendi Analytica},
publisher = {mathdoc},
year = {2021},
doi = {10.15781/gw9q-k252},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/}
}
TY - JOUR AU - Laura Cladek AU - Terence Tao TI - Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle JO - Ars Inveniendi Analytica PY - 2021 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/ DO - 10.15781/gw9q-k252 LA - en ID - 10_15781_gw9q_k252 ER -
%0 Journal Article %A Laura Cladek %A Terence Tao %T Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle %J Ars Inveniendi Analytica %D 2021 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/ %R 10.15781/gw9q-k252 %G en %F 10_15781_gw9q_k252
Laura Cladek; Terence Tao. Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle. Ars Inveniendi Analytica (2021). doi: 10.15781/gw9q-k252
Cité par Sources :