Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
@article{10_15781_gw9q_k252, author = {Laura Cladek and Terence Tao}, title = {Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle}, journal = {Ars Inveniendi Analytica}, publisher = {mathdoc}, year = {2021}, doi = {10.15781/gw9q-k252}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/} }
TY - JOUR AU - Laura Cladek AU - Terence Tao TI - Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle JO - Ars Inveniendi Analytica PY - 2021 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/ DO - 10.15781/gw9q-k252 LA - en ID - 10_15781_gw9q_k252 ER -
%0 Journal Article %A Laura Cladek %A Terence Tao %T Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle %J Ars Inveniendi Analytica %D 2021 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/ %R 10.15781/gw9q-k252 %G en %F 10_15781_gw9q_k252
Laura Cladek; Terence Tao. Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle. Ars Inveniendi Analytica (2021). doi : 10.15781/gw9q-k252. http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/
Cité par Sources :