Additive energy of regular measures in one and higher dimensions, and the fractal uncertainty principle
Ars Inveniendi Analytica (2021).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We obtain new bounds on the additive energy of (Ahlfors-David type) regular measures in both one and higher dimensions, which implies expansion results for sums and products of the associated regular sets, as well as more general nonlinear functions of these sets. As a corollary of the higher-dimensional results we obtain some new cases of the fractal uncertainty principle in odd dimensions.
Publié le :
DOI : 10.15781/gw9q-k252
@article{10_15781_gw9q_k252,
     author = {Laura Cladek and Terence Tao},
     title = {Additive energy of regular measures in one and higher dimensions, and
  the fractal uncertainty principle},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2021},
     doi = {10.15781/gw9q-k252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/}
}
TY  - JOUR
AU  - Laura Cladek
AU  - Terence Tao
TI  - Additive energy of regular measures in one and higher dimensions, and
  the fractal uncertainty principle
JO  - Ars Inveniendi Analytica
PY  - 2021
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/
DO  - 10.15781/gw9q-k252
LA  - en
ID  - 10_15781_gw9q_k252
ER  - 
%0 Journal Article
%A Laura Cladek
%A Terence Tao
%T Additive energy of regular measures in one and higher dimensions, and
  the fractal uncertainty principle
%J Ars Inveniendi Analytica
%D 2021
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/
%R 10.15781/gw9q-k252
%G en
%F 10_15781_gw9q_k252
Laura Cladek; Terence Tao. Additive energy of regular measures in one and higher dimensions, and
  the fractal uncertainty principle. Ars Inveniendi Analytica (2021). doi : 10.15781/gw9q-k252. http://geodesic.mathdoc.fr/articles/10.15781/gw9q-k252/

Cité par Sources :