Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
@article{10_15781_chkn_sn69, author = {Mihaela Ifrim and James Rowan and Daniel Tataru and Lizhe Wan}, title = {The {Benjamin-Ono} approximation for {2D} gravity water waves with constant vorticity}, journal = {Ars Inveniendi Analytica}, publisher = {mathdoc}, year = {2022}, doi = {10.15781/chkn-sn69}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/} }
TY - JOUR AU - Mihaela Ifrim AU - James Rowan AU - Daniel Tataru AU - Lizhe Wan TI - The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity JO - Ars Inveniendi Analytica PY - 2022 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/ DO - 10.15781/chkn-sn69 LA - en ID - 10_15781_chkn_sn69 ER -
%0 Journal Article %A Mihaela Ifrim %A James Rowan %A Daniel Tataru %A Lizhe Wan %T The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity %J Ars Inveniendi Analytica %D 2022 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/ %R 10.15781/chkn-sn69 %G en %F 10_15781_chkn_sn69
Mihaela Ifrim; James Rowan; Daniel Tataru; Lizhe Wan. The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity. Ars Inveniendi Analytica (2022). doi : 10.15781/chkn-sn69. http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/
Cité par Sources :