The Benjamin-Ono approximation for 2D gravity water waves with constant
vorticity
Ars Inveniendi Analytica (2022)
Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website
This article is concerned with infinite depth gravity water waves with
constant vorticity in two space dimensions. We consider this system expressed
in position-velocity potential holomorphic coordinates. We show that, for
low-frequency solutions, the Benjamin-Ono equation gives a good and stable
approximation to the system on the natural cubic time scale. The proof relies
on refined cubic energy estimates and perturbative analysis.
@article{10_15781_chkn_sn69,
author = {Mihaela Ifrim and James Rowan and Daniel Tataru and Lizhe Wan},
title = {The {Benjamin-Ono} approximation for {2D} gravity water waves with constant
vorticity},
journal = {Ars Inveniendi Analytica},
publisher = {mathdoc},
year = {2022},
doi = {10.15781/chkn-sn69},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/}
}
TY - JOUR AU - Mihaela Ifrim AU - James Rowan AU - Daniel Tataru AU - Lizhe Wan TI - The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity JO - Ars Inveniendi Analytica PY - 2022 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/ DO - 10.15781/chkn-sn69 LA - en ID - 10_15781_chkn_sn69 ER -
%0 Journal Article %A Mihaela Ifrim %A James Rowan %A Daniel Tataru %A Lizhe Wan %T The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity %J Ars Inveniendi Analytica %D 2022 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.15781/chkn-sn69/ %R 10.15781/chkn-sn69 %G en %F 10_15781_chkn_sn69
Mihaela Ifrim; James Rowan; Daniel Tataru; Lizhe Wan. The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity. Ars Inveniendi Analytica (2022). doi: 10.15781/chkn-sn69
Cité par Sources :