On the derivation of the homogeneous kinetic wave equation for a nonlinear random matrix model
Ars Inveniendi Analytica (2023).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We consider a nonlinear system of ODEs, where the underlying linear dynamics are determined by a Hermitian random matrix ensemble. We prove that the leading order dynamics in the weakly nonlinear, infinite volume limit are determined by a solution to the corresponding kinetic wave equation on a non-trivial timescale. Our proof relies on estimates for Haar-distributed unitary matrices obtained from Weingarten calculus, which may be of independent interest.
Publié le :
DOI : 10.15781/63wy-ad98
@article{10_15781_63wy_ad98,
     author = {Guillaume Dubach and Pierre Germain and Benjamin Harrop-Griffiths},
     title = {On the derivation of the homogeneous kinetic wave equation for a
  nonlinear random matrix model},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.15781/63wy-ad98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/63wy-ad98/}
}
TY  - JOUR
AU  - Guillaume Dubach
AU  - Pierre Germain
AU  - Benjamin Harrop-Griffiths
TI  - On the derivation of the homogeneous kinetic wave equation for a
  nonlinear random matrix model
JO  - Ars Inveniendi Analytica
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/63wy-ad98/
DO  - 10.15781/63wy-ad98
LA  - en
ID  - 10_15781_63wy_ad98
ER  - 
%0 Journal Article
%A Guillaume Dubach
%A Pierre Germain
%A Benjamin Harrop-Griffiths
%T On the derivation of the homogeneous kinetic wave equation for a
  nonlinear random matrix model
%J Ars Inveniendi Analytica
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/63wy-ad98/
%R 10.15781/63wy-ad98
%G en
%F 10_15781_63wy_ad98
Guillaume Dubach; Pierre Germain; Benjamin Harrop-Griffiths. On the derivation of the homogeneous kinetic wave equation for a
  nonlinear random matrix model. Ars Inveniendi Analytica (2023). doi : 10.15781/63wy-ad98. http://geodesic.mathdoc.fr/articles/10.15781/63wy-ad98/

Cité par Sources :