Large scale regularity of almost minimizers of the one-phase problem in periodic media
Ars Inveniendi Analytica (2023).

Voir la notice de l'article provenant de la source Ars Inveniendi Analytica website

We prove that minimizers and almost minimizers of one-phase free boundary energy functionals in periodic media satisfy large scale (1) Lipschitz estimates (2) free boundary flat implies Lipschitz estimates. The proofs are based on techniques introduced by De Silva and Savin for almost minimizers in homogeneous media.
Publié le :
DOI : 10.15781/52x3-ja93
@article{10_15781_52x3_ja93,
     author = {William M Feldman},
     title = {Large scale regularity of almost minimizers of the one-phase problem in
  periodic media},
     journal = {Ars Inveniendi Analytica},
     publisher = {mathdoc},
     year = {2023},
     doi = {10.15781/52x3-ja93},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.15781/52x3-ja93/}
}
TY  - JOUR
AU  - William M Feldman
TI  - Large scale regularity of almost minimizers of the one-phase problem in
  periodic media
JO  - Ars Inveniendi Analytica
PY  - 2023
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.15781/52x3-ja93/
DO  - 10.15781/52x3-ja93
LA  - en
ID  - 10_15781_52x3_ja93
ER  - 
%0 Journal Article
%A William M Feldman
%T Large scale regularity of almost minimizers of the one-phase problem in
  periodic media
%J Ars Inveniendi Analytica
%D 2023
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.15781/52x3-ja93/
%R 10.15781/52x3-ja93
%G en
%F 10_15781_52x3_ja93
William M Feldman. Large scale regularity of almost minimizers of the one-phase problem in
  periodic media. Ars Inveniendi Analytica (2023). doi : 10.15781/52x3-ja93. http://geodesic.mathdoc.fr/articles/10.15781/52x3-ja93/

Cité par Sources :