Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
Kybernetika, Tome 60 (2024) no. 5, pp. 652-681
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.
Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.
DOI : 10.14736/kyb-2024-5-0652
Classification : 49J52, 49M30, 90C29, 90C46
Keywords: interval-valued problem; multiobjective programming; exact l$_1$ penalty function; LU-efficient solution
@article{10_14736_kyb_2024_5_0652,
     author = {Khatri, Julie and Prasad, Ashish Kumar},
     title = {Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems},
     journal = {Kybernetika},
     pages = {652--681},
     year = {2024},
     volume = {60},
     number = {5},
     doi = {10.14736/kyb-2024-5-0652},
     mrnumber = {4848305},
     zbl = {07980816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/}
}
TY  - JOUR
AU  - Khatri, Julie
AU  - Prasad, Ashish Kumar
TI  - Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
JO  - Kybernetika
PY  - 2024
SP  - 652
EP  - 681
VL  - 60
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/
DO  - 10.14736/kyb-2024-5-0652
LA  - en
ID  - 10_14736_kyb_2024_5_0652
ER  - 
%0 Journal Article
%A Khatri, Julie
%A Prasad, Ashish Kumar
%T Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
%J Kybernetika
%D 2024
%P 652-681
%V 60
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/
%R 10.14736/kyb-2024-5-0652
%G en
%F 10_14736_kyb_2024_5_0652
Khatri, Julie; Prasad, Ashish Kumar. Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems. Kybernetika, Tome 60 (2024) no. 5, pp. 652-681. doi: 10.14736/kyb-2024-5-0652

[1] Antczak, T.: $(p,r)$-invex sets and functions. J. Math. Anal. Appl. 263 (2001), 355-379. | DOI | MR

[2] Antczak, T.: Exact penalty functions method for mathematical programming problems involving invex functions. Europ. J. Oper. Res. 198 (2009), 29-36. | DOI | MR

[3] Antczak, T.: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems. In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. | DOI | MR

[4] Antczak, T.: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems. J. Optim. Theory Appl. 176 (2018), 205-224. | DOI | MR

[5] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150. | DOI | MR

[6] Antczak, T., Farajzadeh, A.: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions. J. Industr. Management Optim. 19(8) (2023), 1-26. | DOI | MR

[7] Antczak, T., Studniarski, M.: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming. Functional Anal. Optim.37 (2016), 1465-1487. | DOI | MR

[8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991. | MR | Zbl

[9] Ben-Israel, A., Mond, B.: What is invexity. J. Austral. Math. Soc. Series B 28 (1986). 1-9. | DOI | MR

[10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions. In: Proc. Allerton Conference, 2000.

[11] Craven, B. D.: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24 (1981), 357-366. | DOI | MR

[12] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR

[13] Fletcher, R.: An exact penalty function for nonlinear programming with inequalities. Math. Programm. 5 (1973), 129-150. | DOI | MR

[14] Ha, N. X., Luu, D. V.: Invexity of supremum and infimum functions. Bull. Austral. Math. Soc. 65 (2002), 289-306. | DOI | MR

[15] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. | DOI | MR

[16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127. | DOI | MR

[17] Jayswal, A., Banerjee, J.: An exact l$_1$ penalty approach for interval-valued programming problem. J. Oper. Res. Soc. China 4 (2016), 461-481. | DOI | MR

[18] Mangasarian, O. L.: Sufficiency of exact penalty minimization. SIAM J. Control Optim. 23 (1985), 30-37. | DOI | MR

[19] Martin, D. H.: The essence of invexity. J. Optim. Theory Appl. 42 (1985), 65-76. | DOI | MR

[20] Moore, R. E.: Interval Analysis. Prentice-Hall, Englewood Cliffs 1966. | MR

[21] Moore, R. E.: Methods and applications of interval analysis. Soc. Industr. Appl. Math., Philadelphia 1979. | MR

[22] Pietrzykowski, T.: An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6 (1969), 299-304. | DOI | MR

[23] Reiland, T. W.: Nonsmooth invexity. Bull. Austral. Math. Soc. 42 (1990), 437-446. | DOI | MR

[24] Khatri, S., Prasad, A. K.: Duality for a fractional variational formulation using $\eta $-approximated method. Kybernetika 59(5) (2023), 700-722. | DOI | MR

[25] Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bull. Austral. Math. Soc. 38 (1988), 177-189. | DOI | MR

[26] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Europ, J. Oper. Res. 176 (2007), 46-59. | DOI | MR

[27] Wu, H. C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138 (2008), 497-509. | DOI | MR

[28] Zangwill, W. I.: Non-linear programming via penalty functions. Management Sci. 13 (1967), 344-358. | DOI | MR

[29] Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems. J. Appl. Math. Article ID 641345 (2013). | DOI | MR

[30] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization. Fuzzy Inform. Engrg.2 (2009), 1315-1323. | DOI | MR

Cité par Sources :