Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
Kybernetika, Tome 60 (2024) no. 5, pp. 652-681 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.
Our objective in this article is to explore the idea of an unconstrained problem using the exact l$_1$ penalty function for the nonsmooth multiobjective interval-valued problem (MIVP) having inequality and equality constraints. First of all, we figure out the KKT-type optimality conditions for the problem (MIVP). Next, we establish the equivalence between the set of weak LU-efficient solutions to the problem (MIVP) and the penalized problem (MIVP$_\rho$) with the exact l$_1$ penalty function. The utility of this transformation lies in the fact that it converts constrained problems to unconstrained ones. To accurately predict the applicability of the results presented in the paper, meticulously crafted examples are provided.
DOI : 10.14736/kyb-2024-5-0652
Classification : 49J52, 49M30, 90C29, 90C46
Keywords: interval-valued problem; multiobjective programming; exact l$_1$ penalty function; LU-efficient solution
@article{10_14736_kyb_2024_5_0652,
     author = {Khatri, Julie and Prasad, Ashish Kumar},
     title = {Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems},
     journal = {Kybernetika},
     pages = {652--681},
     year = {2024},
     volume = {60},
     number = {5},
     doi = {10.14736/kyb-2024-5-0652},
     mrnumber = {4848305},
     zbl = {07980816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/}
}
TY  - JOUR
AU  - Khatri, Julie
AU  - Prasad, Ashish Kumar
TI  - Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
JO  - Kybernetika
PY  - 2024
SP  - 652
EP  - 681
VL  - 60
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/
DO  - 10.14736/kyb-2024-5-0652
LA  - en
ID  - 10_14736_kyb_2024_5_0652
ER  - 
%0 Journal Article
%A Khatri, Julie
%A Prasad, Ashish Kumar
%T Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems
%J Kybernetika
%D 2024
%P 652-681
%V 60
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/
%R 10.14736/kyb-2024-5-0652
%G en
%F 10_14736_kyb_2024_5_0652
Khatri, Julie; Prasad, Ashish Kumar. Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems. Kybernetika, Tome 60 (2024) no. 5, pp. 652-681. doi: 10.14736/kyb-2024-5-0652

Cité par Sources :