Keywords: interval-valued problem; multiobjective programming; exact l$_1$ penalty function; LU-efficient solution
@article{10_14736_kyb_2024_5_0652,
author = {Khatri, Julie and Prasad, Ashish Kumar},
title = {Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems},
journal = {Kybernetika},
pages = {652--681},
year = {2024},
volume = {60},
number = {5},
doi = {10.14736/kyb-2024-5-0652},
mrnumber = {4848305},
zbl = {07980816},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/}
}
TY - JOUR AU - Khatri, Julie AU - Prasad, Ashish Kumar TI - Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems JO - Kybernetika PY - 2024 SP - 652 EP - 681 VL - 60 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/ DO - 10.14736/kyb-2024-5-0652 LA - en ID - 10_14736_kyb_2024_5_0652 ER -
%0 Journal Article %A Khatri, Julie %A Prasad, Ashish Kumar %T Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems %J Kybernetika %D 2024 %P 652-681 %V 60 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-5-0652/ %R 10.14736/kyb-2024-5-0652 %G en %F 10_14736_kyb_2024_5_0652
Khatri, Julie; Prasad, Ashish Kumar. Exact l$_1$ penalty function for nonsmooth multiobjective interval-valued problems. Kybernetika, Tome 60 (2024) no. 5, pp. 652-681. doi: 10.14736/kyb-2024-5-0652
[1] Antczak, T.: $(p,r)$-invex sets and functions. J. Math. Anal. Appl. 263 (2001), 355-379. | DOI | MR
[2] Antczak, T.: Exact penalty functions method for mathematical programming problems involving invex functions. Europ. J. Oper. Res. 198 (2009), 29-36. | DOI | MR
[3] Antczak, T.: The exact l$_1$ penalty function method for constrained nonsmooth invex optimization problems. In: System Modeling and Optimization Vol. 391 of the series IFIP Advances in Information and Communication Technology (2013) (D. Hömberg and F. Tröltzsch, eds.), pp. 461-470. | DOI | MR
[4] Antczak, T.: Exactness property of the exact absolute value penalty function method for solving convex nondifferentiable interval-valued optimization problems. J. Optim. Theory Appl. 176 (2018), 205-224. | DOI | MR
[5] Antczak, T.: Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Math. Scientia 37 (2017), 1133-1150. | DOI | MR
[6] Antczak, T., Farajzadeh, A.: On nondifferentiable semi-infinite multiobjective programming with interval-valued functions. J. Industr. Management Optim. 19(8) (2023), 1-26. | DOI | MR
[7] Antczak, T., Studniarski, M.: The exactness property of the vector exact $l_1$ penalty function method in nondifferentiable invex multiobjective programming. Functional Anal. Optim.37 (2016), 1465-1487. | DOI | MR
[8] Bazaraa, M. S., Sherali, H. D., Shetty, C. M.: Nonlinear Programming: Theory and Algorithms. John Wiley and Sons, New York 1991. | MR | Zbl
[9] Ben-Israel, A., Mond, B.: What is invexity. J. Austral. Math. Soc. Series B 28 (1986). 1-9. | DOI | MR
[10] Bertsekas, D. P., Koksal, A. E.: Enhanced optimality conditions and exact penalty functions. In: Proc. Allerton Conference, 2000.
[11] Craven, B. D.: Invex functions and constrained local minima. Bull. Austral. Math. Soc. 24 (1981), 357-366. | DOI | MR
[12] Clarke, F. H.: Optimization and Nonsmooth Analysis. Wiley, New York 1983. | MR
[13] Fletcher, R.: An exact penalty function for nonlinear programming with inequalities. Math. Programm. 5 (1973), 129-150. | DOI | MR
[14] Ha, N. X., Luu, D. V.: Invexity of supremum and infimum functions. Bull. Austral. Math. Soc. 65 (2002), 289-306. | DOI | MR
[15] Hanson, M. A.: On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 80 (1981), 545-550. | DOI | MR
[16] Jayswal, A., Stancu-Minasian, I., Ahmad, I.: On sufficiency and duality for a class of interval-valued programming problems. Appl. Math. Comput. 218 (2011), 4119-4127. | DOI | MR
[17] Jayswal, A., Banerjee, J.: An exact l$_1$ penalty approach for interval-valued programming problem. J. Oper. Res. Soc. China 4 (2016), 461-481. | DOI | MR
[18] Mangasarian, O. L.: Sufficiency of exact penalty minimization. SIAM J. Control Optim. 23 (1985), 30-37. | DOI | MR
[19] Martin, D. H.: The essence of invexity. J. Optim. Theory Appl. 42 (1985), 65-76. | DOI | MR
[20] Moore, R. E.: Interval Analysis. Prentice-Hall, Englewood Cliffs 1966. | MR
[21] Moore, R. E.: Methods and applications of interval analysis. Soc. Industr. Appl. Math., Philadelphia 1979. | MR
[22] Pietrzykowski, T.: An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6 (1969), 299-304. | DOI | MR
[23] Reiland, T. W.: Nonsmooth invexity. Bull. Austral. Math. Soc. 42 (1990), 437-446. | DOI | MR
[24] Khatri, S., Prasad, A. K.: Duality for a fractional variational formulation using $\eta $-approximated method. Kybernetika 59(5) (2023), 700-722. | DOI | MR
[25] Weir, T., Jeyakumar, V.: A class of nonconvex functions and mathematical programming. Bull. Austral. Math. Soc. 38 (1988), 177-189. | DOI | MR
[26] Wu, H. C.: The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function. Europ, J. Oper. Res. 176 (2007), 46-59. | DOI | MR
[27] Wu, H. C.: Wolfe duality for interval-valued optimization. J. Optim. Theory Appl. 138 (2008), 497-509. | DOI | MR
[28] Zangwill, W. I.: Non-linear programming via penalty functions. Management Sci. 13 (1967), 344-358. | DOI | MR
[29] Zhang, J.: Optimality condition and Wolfe duality for invex interval-valued nonlinear programming problems. J. Appl. Math. Article ID 641345 (2013). | DOI | MR
[30] Zhou, H. C., Wang, Y. J.: Optimality condition and mixed duality for interval-valued optimization. Fuzzy Inform. Engrg.2 (2009), 1315-1323. | DOI | MR
Cité par Sources :