Keywords: multi-index transportation problem; fixed charge transportation problem; fuzzy mathematics; multi-objective problems
@article{10_14736_kyb_2024_3_0271,
author = {Hakim, Maroua and Zitouni, Rachid},
title = {An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem},
journal = {Kybernetika},
pages = {271--292},
year = {2024},
volume = {60},
number = {3},
doi = {10.14736/kyb-2024-3-0271},
mrnumber = {4777310},
zbl = {07893458},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-3-0271/}
}
TY - JOUR AU - Hakim, Maroua AU - Zitouni, Rachid TI - An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem JO - Kybernetika PY - 2024 SP - 271 EP - 292 VL - 60 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-3-0271/ DO - 10.14736/kyb-2024-3-0271 LA - en ID - 10_14736_kyb_2024_3_0271 ER -
%0 Journal Article %A Hakim, Maroua %A Zitouni, Rachid %T An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem %J Kybernetika %D 2024 %P 271-292 %V 60 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-3-0271/ %R 10.14736/kyb-2024-3-0271 %G en %F 10_14736_kyb_2024_3_0271
Hakim, Maroua; Zitouni, Rachid. An approach to solve a fuzzy bi-objective multi-index fixed charge transportation problem. Kybernetika, Tome 60 (2024) no. 3, pp. 271-292. doi: 10.14736/kyb-2024-3-0271
[1] Adlakha, V., Kowalski, K.: A simple heuristic for solving small fixed-charge transportation problems. OMEGA: Int. J. Management Sci. 31 (2003), 205-211. | DOI
[2] Adlakha, V., Kowalski, K., Lev, B.: A branching method for the fixed charge transportation problem. OMEGA: Int. J. Management Sci. 38 (2010), 393-397. | DOI | MR
[3] Ahuja, A., Arora, S. R.: Multi index fixed charge bi-criterion transportation problem. Indian J. Pure Appl. Math. 32 (2001), 739-746. | MR
[4] Balinski, M. L.: Fixed cost transportation problems. Naval Res. Logist. Quarterly 8(1961), 41-54. | DOI
[5] El-Sherbiny, M. M., Alhamali, R. M.: A hybrid particle swarm algorithm with artificialimmune learning for solving the fixed charge transportation problem. Comput. Industr. Engrg, 64 (2013), 610-620. | DOI
[6] Gasilov, N., Amrahov, Ş. E., Fatullayev, A. G., Karakaş, H. I., AkIn, Ö.: Application of geometric approach for fuzzy linear systems to a fuzzy input-output analysis. CMES: Computer Model. Engrg. Sci. 75 (2011), 189-203. | MR
[7] Gasilov, A. G., Fatullayev, S. E., Amrahov, Ş. E.: Solution of non-square fuzzy linear systems. Journal of Multiple-Valued Logic and Soft computing, 20 (2013), 221-237. | MR
[8] Ghosh, S., Roy, S. K., Verdegay, J. L.: Multi-objective fully intuitionistic fuzzy fixed charge transportation problem. Complex Intell. Syst. 7 (2021), 1009-1023. | DOI
[9] Ghosh, S., Roy, S. K., Verdegay, J. L.: Fixed-charge solid transportation problem with budget constraints based on carbon emission in neutrosophic environment. Soft Comput. 26 (2022), 11611-11625. | DOI
[10] Ghosh, S., Küfer, K., Roy, S. K., Weber, G.: Type-2 zigzag uncertain multi-objective fixed-charge solid transportation problem: time window vs. preservation technology. Central Europ. J. Oper. Res. 31 (2023), 337-362 | DOI | MR
[11] Haley, K. B.: The Solid transportation problem. Oper. Res. 10 (1962), 448-463. | DOI
[12] Haque, S., Bhurjee, K., Kumar, P.: Multi-objective transportation problem with fixed charge budget constraints under uncertain environment. System Sci. Control Engrg. 10 (2022), 899-909. | DOI
[13] Hedid, M., Zitouni, R.: Solving the four-index fully fuzzy transportation problem. Croatian Oper. Res. Rev. 11 (2020), 199-215. | DOI | MR
[14] Hirsch, W. M., Dantzig, G. B.: The fixed charge problem. Naval Research Logistics Quarterly, 15 (1968), 413-424. | DOI | MR
[15] Kartli, N., Bostanci, E., Guzel, M. S.: A new algorithm for optimal solution of fixed charge transportation problem. Kybernetika 59 (2023), 45-63. | DOI | MR
[16] Khurana, A., Adlakha, V.: On multi-index fixed charge bi-criterion transportation problem. OPSEARCH 52 (2015), 733-745. | DOI | MR
[17] Kumar, A., Gupta, A., Sharma, M. K.: Solving fuzzy bi-criterion fixed charge transportation problem using a new fuzzy algorithm. Int. J. Appl. Sci. Engrg. 8 (2010), 77-98.
[18] Liou, T. S., Wang, M. J.: Ranking fuzzy numbers with integral value. Fuzzy Sets Systems 50 (1992), 247-255. | DOI | MR
[19] Lotfi, M., Tavakkoli-Moghaddam, R.: A genetic algorithm using priority based encoding with new operators for fixed charge transportation problems. Appl. Soft Comput. 13 (2013), 2711-2726. | DOI
[20] Maity, G., Yu, V. F., Roy, S. K.: Optimum intervention in transportation networks using multimodel system under stochastic environment. J. Adv. Transport. (2022).
[21] Mardanya, D., Roy, S. K.: The multi-objective multi-item just-in-time transportation problem. Optimization 71 (2022), 4665-4696. | DOI | MR
[22] Mardanya, D., Roy, S. K.: Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Chin. Univ. 37 (2022), 111-130. | DOI | MR
[23] Mardanya, D., Roy, S. K., Yu, V. F.: Solving the multi-model transportation problem via the rough interval approach. RAIRO Operations Research, 56 (2022), 3155-3185. | DOI | MR
[24] Mardanya, D., Roy, S. K.: New approach to solve fuzzy multi-objective multi-item solid transportation problem. RAIRO Oper. Res. 57 (2023), 99-120. | DOI | MR
[25] McKeown, P. G.: A vertex ranking procedure for solving the linear fixed charge problem. Oper. Res. (1975), 1183-1191. | DOI | MR
[26] Molla-Alizadeh, S., Nezhad, S. Sadi, Tavakkoli-Moghaddam, R., Yazdani, M.: Solving a fuzzy fixed charge solid transportation problem by metaheuristics. Math. Comput. Modell. 57 (2013), 1543-1558. | DOI | MR
[27] Mondal, A., Roy, S. K., Midya, S.: Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem. J Ambient Intell Human Comput, 14 (2023), 6975-6999. | DOI
[28] Palekar, U. S., Zionts, S.: A branch-and bound method for the fixed charge transportation problem. Management Sci. 36 (1990), 1092-1105. | DOI | MR
[29] Rousseau, J. M.: A Cutting Plane Method for the Fixed Cost Problem. Doctoral Dissertation. Massachusetts Institute of Technology, Cambridge 1973.
[30] Roy, S. K., Midya, S.: Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Appl Intell. 49 (2019), 3524-3538. | DOI
[31] Sadeghi-Moghaddam, S., Hajiaghaei-Keshteli, M., Mahmoodjamloo, M.: New approaches in metaheuristics to solve the fixed charge transportation problem in a fuzzy environment. Neural Comput. Appl. 31 (2017), 477-497. | DOI
[32] Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D.: A tabu search heuristic procedure for the fixed charge transportation problem. Europ. J. Oper. Res. 106 (1998), 441-456. | DOI
[33] Singh, S., Tuli, R., Sarode, D.: Pareto optimal solution of the fuzzy multi-index bi-criteria fixed charge transportation problem. Int. J. Fuzzy Math. Arch. 13 (2017), 199-212. | DOI
[34] Yousefi, K., Afshari, J., Hajiaghaei-Keshteli, M.: Solving the fixed charge transportation problem by new heuristic approach. J. Optim. Industr. Engrg. 2 (2019), 41-52.
[35] Zadeh, L.: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | MR | Zbl
[36] Zitouni, R., Achache, M.: A numerical comparison between two exact methods for solving a capacitated 4-index transportation problem. J. Numer. Anal. Approx. Theory 46 (2017), 181-192. | DOI | MR
[37] Zitouni, R., Keraghel, A.: Resolution of a capacitated transportation problem with four subscripts. Kybernetes 32 (2003), 1450-1463. | DOI
[38] Zitouni, R., Keraghel, A.: A note on the algorithm of resolution of a capacitated transportation problem with four subscripts. Fast East J. Math. Sci. (FJMS) 26 (2007), 769-778. | MR
Cité par Sources :