Keywords: fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter
@article{10_14736_kyb_2024_2_0244,
author = {Shen, Yanjun and Ma, Chen and Zhao, Chenhao and Wu, Zebin},
title = {Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise},
journal = {Kybernetika},
pages = {244--270},
year = {2024},
volume = {60},
number = {2},
doi = {10.14736/kyb-2024-2-0244},
mrnumber = {4757772},
zbl = {07893457},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0244/}
}
TY - JOUR AU - Shen, Yanjun AU - Ma, Chen AU - Zhao, Chenhao AU - Wu, Zebin TI - Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise JO - Kybernetika PY - 2024 SP - 244 EP - 270 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0244/ DO - 10.14736/kyb-2024-2-0244 LA - en ID - 10_14736_kyb_2024_2_0244 ER -
%0 Journal Article %A Shen, Yanjun %A Ma, Chen %A Zhao, Chenhao %A Wu, Zebin %T Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise %J Kybernetika %D 2024 %P 244-270 %V 60 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0244/ %R 10.14736/kyb-2024-2-0244 %G en %F 10_14736_kyb_2024_2_0244
Shen, Yanjun; Ma, Chen; Zhao, Chenhao; Wu, Zebin. Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise. Kybernetika, Tome 60 (2024) no. 2, pp. 244-270. doi: 10.14736/kyb-2024-2-0244
[1] Astolfi, D., Zaccarian, L., Jungers, M.: On the use of low-pass filters in high-gain observers. Systems Control Lett. 148, (2021). | DOI | MR
[2] Chadli, M., Abdo, A., Ding, S. X.: H-/$ {H}_\infty $ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system. Automatica 49 (2013), 1996-2005. | DOI | MR
[3] Chang, X., Yang, G.: Nonfragile $ {H}_\infty $ filtering of continuous-time fuzzy systems. IEEE Trans. Signal Process. 59 (2010), 1528-1538. | DOI | MR
[4] Chen, Jianliang, Zhang, Weidong, Cao, Yongyan, Chu, Hongjun: Observer-based consensus control against actuator faults for linear parameter-varying multiagent systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (2016), 1336-1347. | DOI
[5] Cui, D., Niu, B., Wang, H., Yang, D.: Adaptive fuzzy output-feedback fault-tolerant tracking control of a class of uncertain nonlinear switched systems. Taylor and Francis 50 (2019), 2673-2686. | DOI | MR
[6] Cui, D., Ahn, Ch. K., Xiang, Z.: Fault-tolerant fuzzy observer-based fixed-time tracking control for nonlinear switched systems. IEEE Trans. Fuzzy Systems (2023). | DOI
[7] Cui, D., Chadli, M., Xiang, Z.: Fuzzy fault-tolerant predefined-time control for switched systems: a singularity-free method. IEEE Trans. Fuzzy Systems (2023). | DOI
[8] Gong, J., Jiang, B., Shen, Q. S.: Distributed adaptive output-feedback fault tolerant control for nonlinear systems with sensor faults. IEEE Trans. Industr. Inform. 38 (2020), 4173-4190. | DOI
[9] Guo, H., Xu, J., Chen, Y.: Robust control of fault-tolerant permanent-magnet synchronous motor for aerospace application with guaranteed fault switch process. IEEE Transa. Industr. Electronics 62 (2015), 7309-7321. | DOI
[10] He, X., Wang, Z., Qin, L., Zhou, D.: Active fault-tolerant control for an internet-based networked three-tank system. IEEE Trans. Control Systems Technol. 24 (2016), 2150-2157. | DOI | MR
[11] Jia, F., He, X.: Adaptive fault-tolerant tracking control for discrete-time nonstrict-feedback nonlinear systems with stochastic noises. IEEE Trans. Automat. Sci. Engrg. (2023), 1-13. | DOI
[12] Keliris, Ch., Polycarpou, M. M., Parisini, T.: An integrated learning and filtering approach for fault diagnosis of a class of nonlinear dynamical systems. IEEE Trans. Neural Networks Learning Systems 28 (2016), 988-1004. | DOI
[13] Kumar, S. V., Raja, R., Anthoni, S. M., Cao, J., Tu, Z.: Robust finite-time non-fragile sampled-data control for TS fuzzy flexible spacecraft model with stochastic actuator faults. Applied Math. Comput. 321 (2018), 483-497. | DOI | MR
[14] M.-S, Koo, Choi, H.-L.: State feedback regulation of high-order feedforward nonlinear systems with delays in the state and input under measurement sensitivity. Int. J. Systems Sci. 52 (2021), 2034-2047. | DOI | MR
[15] Li, Y., Zhang, J., Tong, S.: Fuzzy adaptive optimized leader-following formation control for second-order stochastic multiagent systems. IEEE Trans. Industr. Inform. 18 (2021), 6026-6037. | DOI
[16] Li, X. X., Zhu, F., Zak, Chakrabarty A.: Nonfragile fault-tolerant fuzzy observer-based controller design for nonlinear systems. IEEE Trans. Fuzzy Systems 24 (2016), 1679-1689. | DOI
[17] Liu, Z., Chen, C., Zhang, Y., Chen, C. L. P.: Adaptive neural control for dual-arm coordination of humanoid robot with unknown nonlinearities in output mechanism. IEEE Trans. Cybernet. 45 (2014), 507-518. | DOI
[18] Liu, G., Park, J. H., Xu, S., Zhuang, G.: Robust non-fragile $ {H}_\infty $ fault detection filter design for delayed singular Markovian jump systems with linear fractional parametric uncertainties. Nonlinear Analysis: Hybrid Systems 32 (2019), 65-78. | DOI | MR
[19] Liu, L., Wang, Z., Zhang, H.: Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans. Automat. Sci. Engrg. 514 (2016), 299-313. | DOI
[20] Liu, L., Wang, Z., Zhang, H.: Adaptive {NN} fault-tolerant control for discrete-time systems in triangular forms with actuator fault. Neurocomputing 152 (2015), 209-221. | DOI
[21] Long, L., Zhao, J.: Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time. IEEE Trans. Neural Networks Learning Systems 26 (2014), 1350-1362. | DOI | MR
[22] Lu, J., Luo, F., Wang, Y., Hou, M., Guo, H.: Observer-based fault tolerant control for a class of nonlinear systems via filter and neural network. IEEE Access 9 (2021), 91148-91159. | DOI
[23] Ma, H. J., Yang, G.: Detection and adaptive accommodation for actuator faults of a class of non-linear systems. J. Intell. Fuzzy Systems 6 (2020), 2292-2307. | DOI | MR
[24] Paoli, A., Sartini, M., Lafortune, S.: Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47 (2011), 639-649. | DOI | MR
[25] Sakthivel, R., Kanagaraj, R., Wang, C., Selvara: Adaptive non-fragile observer design for the uncertain Lur'e differential inclusion system. Applied Mathematical Modelling 37 (2013), 72-81. | DOI
[26] Sakthivel, R., Kanagaraj, R., Wang, C., Selvara: Non-fragile sampled-data guaranteed cost control for bio-economic fuzzy singular Markovian jump systems. IET Control Theory Appl. 13 (2019), 279-287. | DOI | MR
[27] Sakthivel, R., Mohana, P. R., Wang, Ch., Dhanalakshmi, P.: Observer-based finite-time nonfragile control for nonlinear systems with actuator saturation. J. Comput. Nonlinear Dynamics 14 (2019). | DOI
[28] Schuh, M., Zgorzelski, M., Lunze, J.: Experimental evaluation of an active fault-tolerant control method. Control Engrg. Practice 43 (2015), 1-11. | DOI
[29] Shen, Q., Jiang, B., Shi, P., Lim, Ch.: Novel neural networks-based fault tolerant control scheme with fault alarm. IEEE Trans. Cybernet. 44 (2014), 2190-2201. | DOI
[30] Shen, Y., Wang, D., Fang, Z.: Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities. Kybernetika 58 (2022), 522-546. | DOI | MR
[31] Tang, L., Ma, D., Zhao, J.: Neural networks-based active fault-tolerant control for a class of switched nonlinear systems with its application to RCL circuit. IEEE Trans. Systems, Man, Cybernet.: Systems 50 (2018), 4270-4282. | DOI | MR
[32] Wang, X., Niu, B., Zhao, P., Song, X.: Neural networks-based adaptive finite-time prescribed performance fault-tolerant control of switched nonlinear systems. Int. J. Adaptive Control Signal Process. 35 (2021), 532-548. | DOI | MR
[33] Wang, Y., Song, Y., Lewis, F. L.: Robust adaptive fault-tolerant control of multiagent systems with uncertain nonidentical dynamics and undetectable actuation failures. IEEE Trans. Industr. Electronics 62 (2015), 3978-3988. | DOI
[34] Xiang, Z., Wang, R., Jiang, B.: Nonfragile observer for discrete-time switched nonlinear systems with time delay. Circuits Systems Signal Process. 30 (2011), 73-87. | DOI | MR
[35] Zebin, W., Yanjun, S., Fan, Z., Chenhao, Z.: Robust fuzzy adaptive stabilization for uncertain nonlinear systems with quantized input and output constraints. J. Franklin Inst. (2024), 0016-0032. | DOI | MR
[36] Zeng, W., Wang, Q., Liu, F., Wang, Y.: Learning from adaptive neural network output feedback control of a unicycle-type mobile robot. ISA Trans. 61 (2016), 337-347. | DOI
[37] Zhao, Ch., Li, L., Shen, Y.: Global event-triggered output-feedback stabilization for switched nonlinear systems with time-delay and measurement sensitivity. J. Franklin Inst. 360 (2023), 13080-13107. | DOI | MR
[38] Zhao, D., Polycarpou, M. M.: Fault accommodation for a class of nonlinear uncertain systems with event-triggered input. IEEE/CAA J. Automatica Sinica 9 (2021), 235-245. | DOI | MR
[39] Zhao, X., Yang, H., R, H., Karimi, Zhu, Y.: Adaptive neural control of MIMO nonstrict-feedback nonlinear systems with time delay. IEEE Trans. Cybernet. 46 (2015), 1337-1349. | DOI
[40] Zheng, Qunxian, Xu, Shengyuan, Zhang, Zhengqiang: Nonfragile $ {H}_\infty $ observer design for uncertain nonlinear switched systems with quantization. Applied Mathematics and Computation 386 (2019). | DOI | MR
Cité par Sources :