Keywords: separable nonlinear least squares; multi-step-length gradient iterative method; variable projection algorithm; image restoration
@article{10_14736_kyb_2024_2_0197,
author = {Cui, Hai-Rong and Lin, Jing and Su, Jian-Nan},
title = {Multi-step-length gradient iterative method for separable nonlinear least squares problems},
journal = {Kybernetika},
pages = {197--209},
year = {2024},
volume = {60},
number = {2},
doi = {10.14736/kyb-2024-2-0197},
mrnumber = {4757769},
zbl = {07893454},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0197/}
}
TY - JOUR AU - Cui, Hai-Rong AU - Lin, Jing AU - Su, Jian-Nan TI - Multi-step-length gradient iterative method for separable nonlinear least squares problems JO - Kybernetika PY - 2024 SP - 197 EP - 209 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0197/ DO - 10.14736/kyb-2024-2-0197 LA - en ID - 10_14736_kyb_2024_2_0197 ER -
%0 Journal Article %A Cui, Hai-Rong %A Lin, Jing %A Su, Jian-Nan %T Multi-step-length gradient iterative method for separable nonlinear least squares problems %J Kybernetika %D 2024 %P 197-209 %V 60 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0197/ %R 10.14736/kyb-2024-2-0197 %G en %F 10_14736_kyb_2024_2_0197
Cui, Hai-Rong; Lin, Jing; Su, Jian-Nan. Multi-step-length gradient iterative method for separable nonlinear least squares problems. Kybernetika, Tome 60 (2024) no. 2, pp. 197-209. doi: 10.14736/kyb-2024-2-0197
[1] Aravkin, A. Y., Drusvyatskiy, D., Leeuwen, T. van: Efficient quadratic penalization through the partial minimization technique. IEEE Trans. Automat. Control 63 (2017), 7, 2131-2138. | DOI | MR
[2] Chen, G. Y., Gan, M., Chen, C. P., Chen, L.: A two-stage estimation algorithm based on variable projection method for gps positioning. IEEE Trans. Instrument. Measur. 67 (2018), 11, 2518-2525. | DOI
[3] Chen, G. Y., Gan, M., Chen, C. P., Li, H. X.: Basis function matrix-based flexible coefficient autoregressive models: A framework for time series and nonlinear system modeling. IEEE Trans. Cybernet. 51 (2021), 2, 614-623. | DOI
[4] Chen, G. Y., Wang, S. Q., Gan, M., Chen, C. P.: Insights into algorithms for separable nonlinear least squares problems. IEEE Trans. Imagw Process. 30 (2021), 2, 1207-1218. | DOI | MR
[5] Chen, J., Ding, F.: Modified stochastic gradient identification algorithms with fast convergence rates. J. Vibration Control 17 (2011), 9, 1281-1286. | DOI | MR
[6] Chen, J., Ding, F., Liu, Y., Zhu, Q.: Multi-step-length gradient iterative algorithm for equation-error type models. Systems Control Lett. 115 (2018), 15-21. | DOI | MR
[7] Chung, J., G, J., Nagy: An efficient iterative approach for large-scale separable nonlinear inverse problems. SIAM J. Scientif. Comput. 31 (2010), 6, 4654-4674. | DOI | MR
[8] Cornelio, A., Piccolomini, E. L., Nagy, J. G.: Constrained numerical optimization methods for blind deconvolution. Numer. Algorithms 65 (2014) 1, 23-42. | DOI | MR
[9] Ding, F.: Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 7 (2013), 1, 68-79. | DOI | MR
[10] Ding, F., Liu, G., Liu, X. P.: Partially coupled stochastic gradient identification methods for non-uniformly sampled systems. IEEE Trans. Automat. Control 55 (2010), 8, 1976-1981. | DOI | MR
[11] Ding, F., Liu, Y., Bao, B.: Gradient-based and least-squares-based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mechanic. Engrs, Part I: J. Systems Control Engrg. 226 (2012), 1, 43-55. | DOI
[12] Erichson, N. B., Zheng, P., Manohar, K., Brunton, S. L., Kutz, J. N., Aravkin, A. Y.: Sparse principal component analysis via variable projection. SIAM J. Appl. Math. 80 (2020), 2, 977-1002. | DOI | MR
[13] Gan, M., Chen, C. P., Chen, G. Y., Chen, L.: On some separated algorithms for separable nonlinear least squares problems. IEEE Trans. Cybernet. 48 (2018), 10, 2866-2874. | DOI
[14] Gan, M., Guan, Y., Chen, G. Y., Chen, C. P.: Recursive variable projection algorithm for a class of separable nonlinear models. IEEE Trans. Neural Netw. Learn. Syst. (2020). | MR
[15] Gan, M., Li, H. X., Peng, H.: A variable projection approach for efficient estimation of rbf-arx model. IEEE Trans. Cybernet. 45 (2014), 3, 462-471. | DOI
[16] Gan, M., Peng, H.: Stability analysis of rbf network-based state-dependent autoregressive model for nonlinear time series. Appl. Soft Comput. 12 (2012), 1, 174-181. | DOI
[17] Golub, G., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems 19 (2003), R1. | DOI | MR
[18] Golub, G. .H, Pereyr, V.: The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate. SIAM J. Numer. Snal. 10 (1973), 2, 413-432. | DOI | MR
[19] Haggan, V., Ozaki, T.: Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model. Biometrika 68 (1981), 1, 189-196. | DOI | MR
[20] Hansen, P. Ch., Nagy, J. G., O'leary, D. P.: Deblurring images: matrices, spectra, and filtering. SIAM 2006. | MR
[21] Hussu, A: The conjugate-gradient method for optimal control problems with undetermined final time. Int. J. Control 15 (1972), 1, 79-82. | DOI
[22] Kaufman, L.: A variable projection method for solving separable nonlinear least squares problems. BIT Numer. Math. 15 (1975), 1, 49-57. | DOI | MR
[23] Li, J., Zheng, Y., Lin, Z.: Recursive identification of time-varying systems: Self-tuning and matrix rls algorithms. Syst. Control Lett. 66 (2014), 104-110. | DOI | MR
[24] Li, M., Abubakar, A., Gao, F., Habashy, T. M: Application of the variable projection scheme for calibration in electromagnetic data inversion. IEEE Trans. Antennas Propag. 64 (2015), 1, :332-335. | DOI | MR
[25] Liu, Y., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50 (2014), 3, 962-970. | DOI | MR
[26] Okatani, T., Deguchi, K.: On the wiberg algorithm for matrix factorization in the presence of missing components. Int. J. Comput. Vision 72 (2007), 3, 329-337. | DOI
[27] R, M., Osborne, Smyth, G. K.: A modified prony algorithm for exponential function fitting. SIAM J. Scient. Comput. 16 (1995), 1, :119-138. | DOI | MR
[28] Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M.: Rbf-arx model-based nonlinear system modeling and predictive control with application to a nox decomposition process. Control Engrg. Practice 12 (2004), 2, 191-203. | DOI
[29] Ruhe, A., Wedin, Pe. A.: Algorithms for separable nonlinear least squares problems. SIAM Rev. 22 (1980), 3, 318-337. | DOI | MR
[30] Sjoberg, J., Viberg, M.: Separable non-linear least-squares minimization-possible improvements for neural net fitting. In: Neural Networks for Signal Processing VII. Proc. 1997 IEEE Signal Processing Society Workshop, IEEE 1997, pp. 345-354.
[31] Stathopoulos, G., Korda, M., Jones, C. N.: Solving the infinite-horizon constrained lqr problem using accelerated dual proximal methods. IEEE Trans. Automat. Control. 62 (2016), 4, 1752-1767. | DOI | MR
[32] Yang, H., Gao, J., Wu, Z.: Blur identification and image super-resolution reconstruction using an approach similar to variable projection. IEEE Signal Process. Lett. 15 (2008), 289-292. | DOI
[33] Yu, D., Chen, C. P., Xu, H.: Fuzzy swarm control based on sliding-mode strategy with self-organized omnidirectional mobile robots system. IEEE Trans. Systems Man Cybernet.: Systems 52 (2021), 4, 2262-2274. | DOI
[34] Yu, D., Xu, H., Chen, C. P., Bai, W., Wang, Z.: Dynamic coverage control based on k-means. IEEE Trans. Industr. Electron. 2021.
[35] Zeng, J., He, T., Wang, M.: A fast proximal gradient algorithm for decentralized composite optimization over directed networks. Systems Control Lett. 107 (2017), 36-43. | DOI | MR
Cité par Sources :