Convex $(L,M)$-fuzzy remote neighborhood operators
Kybernetika, Tome 60 (2024) no. 2, pp. 150-171
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given.
In this paper, two kinds of remote neighborhood operators in $(L, M)$-fuzzy convex spaces are proposed, which are called convex $(L,M)$-fuzzy remote neighborhood operators. It is proved that these two kinds of convex $(L,M)$-fuzzy remote neighborhood operators can be used to characterize $(L, M)$-fuzzy convex structures. In addition, the lattice structures of two kinds of convex $ (L,M) $-fuzzy remote neighborhood operators are also given.
DOI : 10.14736/kyb-2024-2-0150
Classification : 03E72, 52A01, 54A40
Keywords: convex $(L, M)$-fuzzy remote neighborhood operator; $(L, M)$-fuzzy convex structure; complete lattice
@article{10_14736_kyb_2024_2_0150,
     author = {Zhao, Hu and Jia, Li-Yan and Chen, Gui-Xiu},
     title = {Convex $(L,M)$-fuzzy remote neighborhood operators},
     journal = {Kybernetika},
     pages = {150--171},
     year = {2024},
     volume = {60},
     number = {2},
     doi = {10.14736/kyb-2024-2-0150},
     mrnumber = {4757767},
     zbl = {07893452},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0150/}
}
TY  - JOUR
AU  - Zhao, Hu
AU  - Jia, Li-Yan
AU  - Chen, Gui-Xiu
TI  - Convex $(L,M)$-fuzzy remote neighborhood operators
JO  - Kybernetika
PY  - 2024
SP  - 150
EP  - 171
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0150/
DO  - 10.14736/kyb-2024-2-0150
LA  - en
ID  - 10_14736_kyb_2024_2_0150
ER  - 
%0 Journal Article
%A Zhao, Hu
%A Jia, Li-Yan
%A Chen, Gui-Xiu
%T Convex $(L,M)$-fuzzy remote neighborhood operators
%J Kybernetika
%D 2024
%P 150-171
%V 60
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0150/
%R 10.14736/kyb-2024-2-0150
%G en
%F 10_14736_kyb_2024_2_0150
Zhao, Hu; Jia, Li-Yan; Chen, Gui-Xiu. Convex $(L,M)$-fuzzy remote neighborhood operators. Kybernetika, Tome 60 (2024) no. 2, pp. 150-171. doi: 10.14736/kyb-2024-2-0150

[1] Fang, J. M., Yue, Y. L.: $L$-fuzzy closure systems. Fuzzy Sets Syst. 161 (2010), 1242-1252. | DOI | MR

[2] Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislowe, M., Scott, D. S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge 2003. | MR

[3] Höhle, U., Rodabaugh, S. E.: Mathematics of fuzzy sets. Logic, topology, and measure theory. Handbooks of Fuzzy Sets, 1999. | MR

[4] Lassak, M.: On metric $B$-convexity for which diameters of any set and its hull are equal. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 969-975. | MR

[5] Maruyama, Y.: Lattice-valued fuzzy convex geometry. RIMS Kokyuroku 1641 (2009), 22-37.

[6] Munkres, J. R.: Topology: A First Course. Prentice-Hall, Englewood Cliffs, NJ 1975. | MR

[7] Pang, B.: Bases and subbases in $(L,M)$-fuzzy convex spaces-. Comput. Appl. Math. 39 (2020), 41. | DOI | MR

[8] Pang, B.: Hull operators and interval operators in $(L,M)$-fuzzy convex spaces. Fuzzy Sets Syst. 405 (2021), 106-127. | DOI | MR

[9] Pang, B., Shi, F.-G.: Strong inclusion orders between $L$-subsets and its applications in $L$-convex spaces. Quaestion. Math. 41 (2018), 8, 1021-1043. | DOI | MR

[10] Rosa, M. V.: On fuzzy topology fuzzy convexity spaces and fuzzy local convexity. Fuzzy Sets Syst. 62 (1994), 97-100. | DOI | MR

[11] Shi, F. G., Xiu, Z. Y.: A new approach to the fuzzification of convex structures. J. Appl. Math. 2014 (2014), 1-12. | DOI | MR

[12] Shi, F. G., Xiu, Z.-Y.: $(L,M)$-fuzzy convex structures. J. Nonlinear Sci. Appl. 10 (2017), 3655-3669. | DOI | MR

[13] Soltan, V. P.: $d$-convexity in graphs. (Russian). Dokl. Akad. Nauk SSSR 272 (1983), 535-537. | MR

[14] Šostak, A. P.: On a fuzzy topological structure Rend. Circ. Mat. Palermo 11 (1985), 89-103. | MR

[15] Vel, M.L.J. Van De: Theory of Convex Structures. North-Holland, Amsterdam 1993. | DOI | MR

[16] Wang, G.-J.: Theory of topological molecular lattices. Fuzzy Sets Syst. 47 (1992), 351-376. | DOI | MR

[17] Xiu, Z. Y., Pang, B.: Base axioms and subbase axioms in $M$-fuzzifying convex spaces. Iran. J. Fuzzy Syst. 15 (2018), 75-87. | MR

[18] Yang, H., Li, E. Q.: A new approach to interval operators in $L$-convex spaces. J. Nonlinear Convex Anal. 21 (2020), 12, 2705-2714. | MR

[19] Yang, H., Pang, B.: Fuzzy points based betweenness relations in $L$-convex spaces. Filomat. 35 (2021), 10, 3521-3532. | DOI | MR

[20] Yang, X. F., Li, S. G.: Net-theoretical convergence in $ (L,M) $-fuzzy cotopological spaces. Fuzzy Sets Syst. 204 (2012), 53-65. | DOI | MR

[21] Yue, Y. L., Fang, J. M.: Categories isomorphic to the Kubiak-Šostak extension of TML. Fuzzy Sets Syst. 157 (2006), 832-842. | DOI | MR

[22] Zhao, H., Hu, X., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb: Concave $(L,M)$-fuzzy interior operators and $(L,M)$-fuzzy hull operators. Comput. Appl. Math. 40 (2021), 301. | DOI | MR

[23] Zhao, H., Sayed, O. R., El-Sanousy, E., Sayed, Y. H. Ragheb, Chen, G. X.: On separation axioms in $(L, M)$-fuzzy convex structures. J. Intel. Fuzzy Syst. 40 (2021), 5, 8765-8773. | DOI | MR

[24] Zhao, H., Song, Q. L., Sayed, O. R., El-Sanousy, E., Sayed, Y. H.Ragheb, Chen, G. X.: Corrigendum to "On $(L, M)$-fuzzy convex structures". Filomat. 35 (2021), 5, 1687-1691. | DOI | MR

[25] Zhao, H., Jia, L. Y., Chen, G. X.: Product and coproduct structures of $(L, M)$-fuzzy hull operators. J. Intel. Fuzzy Syst. 44 (2023), 3515-3526. | DOI | MR

[26] Zhao, H., Zhao, Y. J., Zhang, S. Y.: On $(L,N)$-fuzzy betweenness relations. Filomat. 37 (2023), 11, 3559-3573. | DOI | MR

[27] Zhao, H., Hu, X., Chen, G. X.: A new characterization of the product of $(L, M)$-fuzzy convex structures. J. Intel. Fuzzy Syst. 45 (2023), 4535-4545. | DOI

Cité par Sources :