Keywords: bounded lattices; $t$-norms; $t$-conorms; uninorms
@article{10_14736_kyb_2024_2_0125,
author = {Xiu, Zhen-Yu and Zheng, Xu},
title = {A new approach to construct uninorms via uninorms on bounded lattices},
journal = {Kybernetika},
pages = {125--149},
year = {2024},
volume = {60},
number = {2},
doi = {10.14736/kyb-2024-2-0125},
mrnumber = {4757766},
zbl = {07893451},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0125/}
}
TY - JOUR AU - Xiu, Zhen-Yu AU - Zheng, Xu TI - A new approach to construct uninorms via uninorms on bounded lattices JO - Kybernetika PY - 2024 SP - 125 EP - 149 VL - 60 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0125/ DO - 10.14736/kyb-2024-2-0125 LA - en ID - 10_14736_kyb_2024_2_0125 ER -
Xiu, Zhen-Yu; Zheng, Xu. A new approach to construct uninorms via uninorms on bounded lattices. Kybernetika, Tome 60 (2024) no. 2, pp. 125-149. doi: 10.14736/kyb-2024-2-0125
[1] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. | DOI | MR
[2] Birkhoff, G.: Lattice theory. (Third Edition.). Amer. Math. Soc., Rhode Island 1967. | MR
[3] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin 2008. | Zbl
[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.
[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231. | DOI | MR
[6] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417. | DOI | MR
[7] al., G. D. Çaylı et: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 5, 911-921. | DOI | MR
[8] Çaylı, G. D.: On a new class of $t$-norms and $t$-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR
[9] Çaylı, G.D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26. | DOI | MR
[10] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. | DOI | MR
[11] Çaylı, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. | DOI | MR
[12] Çaylı, G. D.: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices. Kybernetika 55 (2019), 2, 273-294. | DOI | MR
[13] Çaylı, G. D.: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. | DOI | MR
[14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. | DOI | MR
[15] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. Gen. Syst. 47 (2018), 772-793. | DOI | MR
[16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices. Int. J. Gen. Syst. 52 (2023), 4, 414-442. | DOI | MR
[17] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. | DOI | MR | Zbl
[18] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR | Zbl
[19] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. | DOI | MR
[20] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. | DOI | MR
[21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Some new construction methods for $t$-norms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 7, 775-791. | DOI | MR
[22] Ertuğrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216. | DOI | MR
[23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817. | DOI
[24] al., M. Grabisch et: Aggregation Functions. Cambridge University Press, 2009.
[25] al., M. Grabisch et: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43. | DOI | MR
[26] Höhle, U.: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995. | MR
[27] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382. | DOI | MR
[28] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. | DOI | MR
[29] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. | DOI | MR
[30] Jenei, S., Baets, B. De: On the direct decomposability of $t$-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707. | DOI | MR
[31] Ji, W.: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. | DOI | MR
[32] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR
[33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR
[34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices. Kybernetika 55 (2019), 6, 976-993. | DOI | MR
[35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.: Generalized convex combination of triangular norms on bounded lattices. Int. J. Gen. Syst. 49 (2020), 3, 277-301. | DOI | MR
[36] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502. | DOI | MR
[37] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. | DOI | MR | Zbl
[38] Medina, J.: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. | DOI | MR
[39] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. | DOI | MR
[40] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 1, 41-52. | DOI
[41] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
[42] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR | Zbl
[43] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186. | MR
[44] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. | DOI | MR | Zbl
[45] Saminger, S., Klement, E., Mesiar, R.: On extension of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150. | DOI | MR
[46] Wang, Z.: TL-filters of integral residuated $l$-monoids. Inf. Sci. 177 (2007), 887-896. | DOI | MR
[47] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104. | DOI | MR
[48] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108535. | DOI | MR
[49] Xiu, Z. Y., Jiang, Y. X.: New structures for uninorms on bounded lattices. J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030. | DOI | MR
[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR | Zbl
[51] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. | DOI | MR
[52] al., H. P. Zhang et: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121. | DOI | MR
[53] Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. (Fourth Edition.). Kluwer, Aachen 2001. | MR
Cité par Sources :