A new approach to construct uninorms via uninorms on bounded lattices
Kybernetika, Tome 60 (2024) no. 2, pp. 125-149
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.
In this paper, on a bounded lattice $L$, we give a new approach to construct uninorms via a given uninorm $U^{*}$ on the subinterval $[0,a]$ (or $[b,1]$) of $L$ under additional constraint conditions on $L$ and $U^{*}$. This approach makes our methods generalize some known construction methods for uninorms in the literature. Meanwhile, some illustrative examples for the construction of uninorms on bounded lattices are provided.
DOI : 10.14736/kyb-2024-2-0125
Classification : 03B52, 03E72, 06B20
Keywords: bounded lattices; $t$-norms; $t$-conorms; uninorms
@article{10_14736_kyb_2024_2_0125,
     author = {Xiu, Zhen-Yu and Zheng, Xu},
     title = {A new approach to construct uninorms via uninorms on bounded lattices},
     journal = {Kybernetika},
     pages = {125--149},
     year = {2024},
     volume = {60},
     number = {2},
     doi = {10.14736/kyb-2024-2-0125},
     mrnumber = {4757766},
     zbl = {07893451},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0125/}
}
TY  - JOUR
AU  - Xiu, Zhen-Yu
AU  - Zheng, Xu
TI  - A new approach to construct uninorms via uninorms on bounded lattices
JO  - Kybernetika
PY  - 2024
SP  - 125
EP  - 149
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0125/
DO  - 10.14736/kyb-2024-2-0125
LA  - en
ID  - 10_14736_kyb_2024_2_0125
ER  - 
%0 Journal Article
%A Xiu, Zhen-Yu
%A Zheng, Xu
%T A new approach to construct uninorms via uninorms on bounded lattices
%J Kybernetika
%D 2024
%P 125-149
%V 60
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2024-2-0125/
%R 10.14736/kyb-2024-2-0125
%G en
%F 10_14736_kyb_2024_2_0125
Xiu, Zhen-Yu; Zheng, Xu. A new approach to construct uninorms via uninorms on bounded lattices. Kybernetika, Tome 60 (2024) no. 2, pp. 125-149. doi: 10.14736/kyb-2024-2-0125

[1] Aşıcı, E., Mesiar, R.: On the construction of uninorms on bounded lattices. Fuzzy Sets Syst. 408 (2021), 65-85. | DOI | MR

[2] Birkhoff, G.: Lattice theory. (Third Edition.). Amer. Math. Soc., Rhode Island 1967. | MR

[3] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer, Berlin 2008. | Zbl

[4] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica.

[5] Çaylı, G. D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded lattices. Inf. Sci. 367 (2016), 221-231. | DOI | MR

[6] Çaylı, G. D., Karaçal, F.: Construction of uninorms on bounded lattices. Kybernetika 53 (2017), 3, 394-417. | DOI | MR

[7] al., G. D. Çaylı et: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 5, 911-921. | DOI | MR

[8] Çaylı, G. D.: On a new class of $t$-norms and $t$-conorms on bounded lattices. Fuzzy Sets Syst. 332 (2018), 129-143. | DOI | MR

[9] Çaylı, G.D.: On the structure of uninorms on bounded lattices. Fuzzy Sets Syst. 357 (2019), 2-26. | DOI | MR

[10] Çaylı, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. | DOI | MR

[11] Çaylı, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. | DOI | MR

[12] Çaylı, G. D.: Some methods to obtain $t$-norms and $t$-conorms on bounded lattices. Kybernetika 55 (2019), 2, 273-294. | DOI | MR

[13] Çaylı, G. D.: Uninorms on bounded lattices with the underlying $t$-norms and $t$-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. | DOI | MR

[14] Çaylı, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. | DOI | MR

[15] Çaylı, G. D.: A characterization of uninorms on bounded lattices by means of triangular norms and triangular conorms. Int. J. Gen. Syst. 47 (2018), 772-793. | DOI | MR

[16] Çaylı, G. D., Ertuğrul, Ü., Karaçal, F.: Some further construction methods for uninorms on bounded lattices. Int. J. Gen. Syst. 52 (2023), 4, 414-442. | DOI | MR

[17] Baets, B. De, Fodor, J.: Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets Syst. 104 (1999), 133-136. | DOI | MR | Zbl

[18] Baets, B. De, Mesiar, R.: Triangular norms on product lattices. Fuzzy Sets Syst. 104 (1999), 61-75. | DOI | MR | Zbl

[19] Dan, Y. X., Hu, B. Q., Qiao, J. S.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. | DOI | MR

[20] Dan, Y. X., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. | DOI | MR

[21] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Some new construction methods for $t$-norms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 7, 775-791. | DOI | MR

[22] Ertuğrul, Ü., Yeşilyurt, M.: Ordinal sums of triangular norms on bounded lattices. Inf. Sci. 517 (2020), 198-216. | DOI | MR

[23] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Syst. 30 (2015), 807-817. | DOI

[24] al., M. Grabisch et: Aggregation Functions. Cambridge University Press, 2009.

[25] al., M. Grabisch et: Aggregation functions: construction methods, conjunctive, disjunctive and mixed classes. Inf. Sci. 181 (2011), 23-43. | DOI | MR

[26] Höhle, U.: Commutative, residuated l-monoids. In: Non-Classical Logics and Their Applications to Fuzzy Subsets: A Handbook on the Mathematical Foundations of Fuzzy Set Theory (U. Höhle and E. P. Klement, eds.), Kluwer, Dordrecht 1995. | MR

[27] Hua, X. J., Zhang, H. P., Ouyang, Y.: Note on "Construction of uninorms on bounded lattices". Kybernetika 57 (2021), 2, 372-382. | DOI | MR

[28] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. | DOI | MR

[29] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by $t$-norms and $t$-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. | DOI | MR

[30] Jenei, S., Baets, B. De: On the direct decomposability of $t$-norms on product lattices. Fuzzy Sets Syst. 139 (2003), 699-707. | DOI | MR

[31] Ji, W.: Constructions of uninorms on bounded lattices by means of $t$-subnorms and $t$-subconorms. Fuzzy Sets Syst. 403 (2021), 38-55. | DOI | MR

[32] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR

[33] Karaçal, F., Ertuğrul, Ü., Mesiar, R.: Characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 308 (2017), 54-71. | DOI | MR

[34] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for $t$-norms on subintervals to $t$-norms on bounded lattices. Kybernetika 55 (2019), 6, 976-993. | DOI | MR

[35] Karaçal, F., Kesicioğlu, M., Ertuğrul, Ü.: Generalized convex combination of triangular norms on bounded lattices. Int. J. Gen. Syst. 49 (2020), 3, 277-301. | DOI | MR

[36] Liang, X., Pedrycz, W.: Logic-based fuzzy networks: a study in system modeling with triangular norms and uninorms. Fuzzy Sets Syst. 160 (2009), 3475-3502. | DOI | MR

[37] Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 8 (1942), 535-537. | DOI | MR | Zbl

[38] Medina, J.: Characterizing when an ordinal sum of $t$-norms is a $t$-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. | DOI | MR

[39] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. | DOI | MR

[40] Pedrycz, W., Hirota, K.: Uninorm-based logic neurons as adaptive and interpretable processing constructs. Soft Comput. 11 (2007), 1, 41-52. | DOI

[41] Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10 (1960), 313-334. | DOI | MR | Zbl

[42] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York 1983. | MR | Zbl

[43] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186. | MR

[44] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syst. 157 (2006), 1403-1416. | DOI | MR | Zbl

[45] Saminger, S., Klement, E., Mesiar, R.: On extension of triangular norms on bounded lattices. Indag. Math. 19 (2008), 1, 135-150. | DOI | MR

[46] Wang, Z.: TL-filters of integral residuated $l$-monoids. Inf. Sci. 177 (2007), 887-896. | DOI | MR

[47] Xie, A. F., Li, S. J.: On constructing the largest and smallest uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 95-104. | DOI | MR

[48] Xiu, Z. Y., Zheng, X.: New construction methods of uninorms on bounded lattices via uninorms. Fuzzy Sets Syst. 465 (2023), 108535. | DOI | MR

[49] Xiu, Z. Y., Jiang, Y. X.: New structures for uninorms on bounded lattices. J. Intell. Fuzzy Syst. 45 (2023), 2, 2019-2030. | DOI | MR

[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR | Zbl

[51] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. | DOI | MR

[52] al., H. P. Zhang et: A characterization of the classes Umin and Umax of uninorms on a bounded lattice. Fuzzy Sets Syst. 423 (2021), 107-121. | DOI | MR

[53] Zimmermann, H. J.: Fuzzy Set Theory and Its Applications. (Fourth Edition.). Kluwer, Aachen 2001. | MR

Cité par Sources :