Seasonal time-series imputation of gap missing algorithm (STIGMA)
Kybernetika, Tome 59 (2023) no. 6, pp. 861-879.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This work presents a new approach for the imputation of missing data in weather time-series from a seasonal pattern; the seasonal time-series imputation of gap missing algorithm (STIGMA). The algorithm takes advantage from a seasonal pattern for the imputation of unknown data by averaging available data. We test the algorithm using data measured every $10$ minutes over a period of $365$ days during the year 2010; the variables include global irradiance, diffuse irradiance, ultraviolet irradiance, and temperature, arranged in a matrix of dimensions $52,560$ rows for data points over time and $4$ columns for weather variables. The particularity of this work is that the algorithm is well-suited for the imputation of values when the missing data are presented continuously and in seasonal patterns. The algorithm employs a date-time index to collect available data for the imputation of missing data, repeating the process until all missing values are calculated. The tests are performed by removing $5\%$, $10\%$, $15\%$, $20\%$, $25\%$, and $30\%$ of the available data, and the results are compared to autoregressive models. The proposed algorithm has been successfully tested with a maximum of $2,736$ contiguous missing values that account for $19$ consecutive days of a single month; this dataset is a portion of all the missing values when the time-series lacks $30\%$ of all data. The metrics to measure the performance of the algorithms are root-mean-square error (RMSE) and the coefficient of determination ($R^{2}$). The results indicate that the proposed algorithm outperforms autoregressive models while preserving the seasonal behavior of the time-series. The STIGMA is also tested with non-weather time-series of beer sales and number of air passengers per month, which also have a cyclical pattern, and the results show the precise imputation of data.
DOI : 10.14736/kyb-2023-6-0861
Classification : 62-04, 68Pxx
Keywords: contiguous missing values; seasonal patterns; time-series
@article{10_14736_kyb_2023_6_0861,
     author = {Rangel-Heras, Eduardo and Zuniga, Pavel and Alanis, Alma Y. and Hernandez-Vargas, Esteban A. and Sanchez, Oscar D.},
     title = {Seasonal time-series imputation of gap missing algorithm {(STIGMA)}},
     journal = {Kybernetika},
     pages = {861--879},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {2023},
     doi = {10.14736/kyb-2023-6-0861},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0861/}
}
TY  - JOUR
AU  - Rangel-Heras, Eduardo
AU  - Zuniga, Pavel
AU  - Alanis, Alma Y.
AU  - Hernandez-Vargas, Esteban A.
AU  - Sanchez, Oscar D.
TI  - Seasonal time-series imputation of gap missing algorithm (STIGMA)
JO  - Kybernetika
PY  - 2023
SP  - 861
EP  - 879
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0861/
DO  - 10.14736/kyb-2023-6-0861
LA  - en
ID  - 10_14736_kyb_2023_6_0861
ER  - 
%0 Journal Article
%A Rangel-Heras, Eduardo
%A Zuniga, Pavel
%A Alanis, Alma Y.
%A Hernandez-Vargas, Esteban A.
%A Sanchez, Oscar D.
%T Seasonal time-series imputation of gap missing algorithm (STIGMA)
%J Kybernetika
%D 2023
%P 861-879
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0861/
%R 10.14736/kyb-2023-6-0861
%G en
%F 10_14736_kyb_2023_6_0861
Rangel-Heras, Eduardo; Zuniga, Pavel; Alanis, Alma Y.; Hernandez-Vargas, Esteban A.; Sanchez, Oscar D. Seasonal time-series imputation of gap missing algorithm (STIGMA). Kybernetika, Tome 59 (2023) no. 6, pp. 861-879. doi : 10.14736/kyb-2023-6-0861. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0861/

Cité par Sources :