Keywords: random forest; proper edge coloring; interpretable machine learning; snark
@article{10_14736_kyb_2023_6_0807,
author = {Dud\'a\v{s}, Adam and Modrovi\v{c}ov\'a, Bianka},
title = {Interpretable random forest model for identification of edge 3-uncolorable cubic graphs},
journal = {Kybernetika},
pages = {807--826},
year = {2023},
volume = {59},
number = {6},
doi = {10.14736/kyb-2023-6-0807},
zbl = {07830566},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/}
}
TY - JOUR AU - Dudáš, Adam AU - Modrovičová, Bianka TI - Interpretable random forest model for identification of edge 3-uncolorable cubic graphs JO - Kybernetika PY - 2023 SP - 807 EP - 826 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/ DO - 10.14736/kyb-2023-6-0807 LA - en ID - 10_14736_kyb_2023_6_0807 ER -
%0 Journal Article %A Dudáš, Adam %A Modrovičová, Bianka %T Interpretable random forest model for identification of edge 3-uncolorable cubic graphs %J Kybernetika %D 2023 %P 807-826 %V 59 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/ %R 10.14736/kyb-2023-6-0807 %G en %F 10_14736_kyb_2023_6_0807
Dudáš, Adam; Modrovičová, Bianka. Interpretable random forest model for identification of edge 3-uncolorable cubic graphs. Kybernetika, Tome 59 (2023) no. 6, pp. 807-826. doi: 10.14736/kyb-2023-6-0807
[1] Bon-Gang, H.: Performance and Improvements of Green Construction Projects. Elsevier 2018.
[2] Caro, Y., Petrusevski, M., Skrekovski, R.: Remarks on proper conflict-free colorings of graphs. Discrete Math. 346 (2023), 2, 113221. | DOI | MR
[3] Chaitin, G. J.: Register allocation & spilling via graph colouring. In: Proc. 1982 SIGPLAN Symposium on Compiler Construction 1982, pp. 98-105.
[4] Coolsaet, K., D'hondt, S., Goedgebeur, J.: House of Graphs 2.0: A database of interesting graphs and more. Discrete Appl. Math. 325 (2023), 97-107. | DOI | MR
[5] Custode, L. L., Iacca, G.: Evolutionary learning of interpretable decision trees. IEEE Access 11 (2023), 6169-6184. | DOI
[6] Dudáš, A., Modrovičová, B.: Decision trees in proper edge k-coloring of cubic graphs. In: Proc. 33rd Conference FRUCT Association 2023, pp. 21-29.
[7] GraphFilter: Software to help Graph researches providing filtering and visualization to a given list of graphs. Graphfilter 2021.
[8] Kowalik, L.: Improved edge-coloring with three colors. Theoret. Computer Sci. 410 (2009), 38-40, 3733-3742. | DOI | MR
[9] Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Polytechn., Electr. Engrg. 48 (2004), 1-2, 11-16.
[10] Molnar, C.: Interpretable Machine Learning. Published independently, 2019.
[11] Nettleton, D.: Commercial Data Mining. Elsevier 2014.
[12] Rabčan, J., Rusnák, P., Subbotin, S.: Classification by Fuzzy decision trees inducted based on cumulative mutual information. In: Proc. 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 2018, pp. 208-212.
[13] Roditty, L., Williams, V. V.: Fast approximation algorithms for the diameter and radius of sparse graphs. In: STOC '13, Proc. forty-fifth annual ACM symposium on Theory of Computing 2013, pp. 515-524. | DOI | MR
[14] SageMath: Free open-source mathematics software system licensed under the GPL. Sagemath 2005.
[15] Suil, O., Jeong, R. P., Jongyook, P., Wenqian, Z.: Sharp spectral bounds for the edge-connectivity of regular graphs. Europ. J. Combinatorics 110 (2023). | DOI | MR
[16] Tantau, T.: Complexity of the undirected radius and diameter problems for succinctly represented graphs. Technical Report SIIM-TR-A-08-03, Universität zu Lübeck, Lübeck, Germany, (2008).
[17] Vizing, V. G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3 (1964), 25-30. | DOI | MR
[18] Zhen-Mu, H., Hong-Jian, L., Zheng-Jiang, X.: Connectivity and eigenvalues of graphs with given girth or clique number. Linear Algebra Appl. 607 (2020), 319-340. | DOI | MR
Cité par Sources :