Interpretable random forest model for identification of edge 3-uncolorable cubic graphs
Kybernetika, Tome 59 (2023) no. 6, pp. 807-826
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Random forest is an ensemble method of machine learning that reaches a high level of accuracy in decision-making but is difficult to understand from the point of view of interpreting local or global decisions. In the article, we use this method as a means to analyze the edge 3-colorability of cubic graphs and to find the properties of the graphs that affect it most strongly. The main contributions of the presented research are four original datasets suitable for machine learning methods, a random forest model that achieves $97.35\%$ accuracy in distinguishing edge 3-colorable and edge 3-uncolorable cubic graphs, and the identification of crucial features of graph samples from the point of view of its edge colorability using Shapley values.
Random forest is an ensemble method of machine learning that reaches a high level of accuracy in decision-making but is difficult to understand from the point of view of interpreting local or global decisions. In the article, we use this method as a means to analyze the edge 3-colorability of cubic graphs and to find the properties of the graphs that affect it most strongly. The main contributions of the presented research are four original datasets suitable for machine learning methods, a random forest model that achieves $97.35\%$ accuracy in distinguishing edge 3-colorable and edge 3-uncolorable cubic graphs, and the identification of crucial features of graph samples from the point of view of its edge colorability using Shapley values.
DOI :
10.14736/kyb-2023-6-0807
Classification :
68T10, 68T20
Keywords: random forest; proper edge coloring; interpretable machine learning; snark
Keywords: random forest; proper edge coloring; interpretable machine learning; snark
@article{10_14736_kyb_2023_6_0807,
author = {Dud\'a\v{s}, Adam and Modrovi\v{c}ov\'a, Bianka},
title = {Interpretable random forest model for identification of edge 3-uncolorable cubic graphs},
journal = {Kybernetika},
pages = {807--826},
year = {2023},
volume = {59},
number = {6},
doi = {10.14736/kyb-2023-6-0807},
zbl = {07830566},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/}
}
TY - JOUR AU - Dudáš, Adam AU - Modrovičová, Bianka TI - Interpretable random forest model for identification of edge 3-uncolorable cubic graphs JO - Kybernetika PY - 2023 SP - 807 EP - 826 VL - 59 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/ DO - 10.14736/kyb-2023-6-0807 LA - en ID - 10_14736_kyb_2023_6_0807 ER -
%0 Journal Article %A Dudáš, Adam %A Modrovičová, Bianka %T Interpretable random forest model for identification of edge 3-uncolorable cubic graphs %J Kybernetika %D 2023 %P 807-826 %V 59 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-6-0807/ %R 10.14736/kyb-2023-6-0807 %G en %F 10_14736_kyb_2023_6_0807
Dudáš, Adam; Modrovičová, Bianka. Interpretable random forest model for identification of edge 3-uncolorable cubic graphs. Kybernetika, Tome 59 (2023) no. 6, pp. 807-826. doi: 10.14736/kyb-2023-6-0807
Cité par Sources :