A characterization of uninorms on bounded lattices via closure and interior operators
Kybernetika, Tome 59 (2023) no. 5, pp. 768-790
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.
Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.
DOI : 10.14736/kyb-2023-5-0768
Classification : 03B52, 03E72, 06B20, 94D05, 97E30
Keywords: bounded lattice; closure operator; uninorm; interior operator; T-norm; T-conorm
@article{10_14736_kyb_2023_5_0768,
     author = {\c{C}ayli, G\"ul Deniz},
     title = {A characterization of uninorms on bounded lattices via closure and interior operators},
     journal = {Kybernetika},
     pages = {768--790},
     year = {2023},
     volume = {59},
     number = {5},
     doi = {10.14736/kyb-2023-5-0768},
     mrnumber = {4681022},
     zbl = {07790661},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0768/}
}
TY  - JOUR
AU  - Çayli, Gül Deniz
TI  - A characterization of uninorms on bounded lattices via closure and interior operators
JO  - Kybernetika
PY  - 2023
SP  - 768
EP  - 790
VL  - 59
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0768/
DO  - 10.14736/kyb-2023-5-0768
LA  - en
ID  - 10_14736_kyb_2023_5_0768
ER  - 
%0 Journal Article
%A Çayli, Gül Deniz
%T A characterization of uninorms on bounded lattices via closure and interior operators
%J Kybernetika
%D 2023
%P 768-790
%V 59
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0768/
%R 10.14736/kyb-2023-5-0768
%G en
%F 10_14736_kyb_2023_5_0768
Çayli, Gül Deniz. A characterization of uninorms on bounded lattices via closure and interior operators. Kybernetika, Tome 59 (2023) no. 5, pp. 768-790. doi: 10.14736/kyb-2023-5-0768

[1] Aşıci, E.: On the constructions of t-norms and t-conorms on some special classes of bounded lattices. Kybernetika 57 (2021), 352-371. | DOI | MR

[2] Aşıcı, E., Mesiar, R.: On the direct product of uninorms on bounded lattices. Kybernetika 57 (2021), 989-1004. | DOI | MR

[3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer, Berlin 2007.

[4] Benítez, J. M., Castro, J. L., Requena, I.: Are artificial neural networks black boxes?. IEEE Trans. Neural Netw. 8 (1997), 1156-1163. | DOI

[5] Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publishers, Providence 1967. | MR | Zbl

[6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices. In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014. | DOI

[7] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices - recent development. In: IWIFSGN 2017, EUSFLAT 2017, AISC, vol. 641 J. Kacprzyk et al. eds. Springer, Cham, 2018, pp. 224-234. | DOI

[8] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices with given underlying operations. In: AGOP 2019, AISC, vol. 981 R. Halaś et al. eds. Springer, Cham, 2019, pp. 183-194. | DOI

[9] Çayli, G. D.: Alternative approaches for generating uninorms on bounded lattices. Inf. Sci. 488 (2019), 111-139. | DOI | MR

[10] Çayli, G. D.: New methods to construct uninorms on bounded lattices. Int. J. Approx. Reason. 115 (2019), 254-264. | DOI | MR

[11] Çayli, G. D.: Construction methods for idempotent nullnorms on bounded lattices. Appl. Math. Comput. 366 (2020), 124746. | DOI | MR

[12] Çayli, G. D.: Uninorms on bounded lattices with the underlying t-norms and t-conorms. Fuzzy Sets Syst. 395 (2020), 107-129. | DOI | MR

[13] Çayli, G. D.: On generating of t-norms and t-conorms on bounded lattices. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28 (2020), 807-835. | DOI | MR

[14] Çayli, G. D.: New construction approaches of uninorms on bounded lattices. Int. J. Gen. Syst. 50 (2021), 139-158. | DOI | MR

[15] Çayli, G. D., Karaçal, F., Mesiar, R.: On internal and locally internal uninorms on bounded lattices. Int. J. Gen. Syst. 48 (2019), 235-259. | DOI | MR

[16] Dan, Y., Hu, B. Q., Qiao, J.: New constructions of uninorms on bounded lattices. Int. J. Approx. Reason. 110 (2019), 185-209. | DOI | MR

[17] Dan, Y., Hu, B. Q.: A new structure for uninorms on bounded lattices. Fuzzy Sets Syst. 386 (2020), 77-94. | DOI | MR

[18] Baets, B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631-642. | DOI | Zbl

[19] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17 (2009), 1-14. | DOI | MR | Zbl

[20] Drewniak, J., Drygaś, P.: On a class of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10 (2002), 5-10. | DOI | MR

[21] Drossos, C. A.: Generalized t-norm structures. Fuzzy Sets Syst. 104 (1999), 53-59. | DOI | MR

[22] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators. In: Proc. EUFIT '96, Aachen, 1996, pp. 22-26.

[23] Drygaś, P.: On the structure of continuous uninorms. Kybernetika 43 (2007), 183-196. | MR | Zbl

[24] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms. Fuzzy Sets Syst. 291 (2016), 82-97. | DOI | MR

[25] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Academic Publisher, Boston 2000. | MR

[26] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inf. Sci. 36 (1985), 85-121. | DOI | MR | Zbl

[27] Engelking, R.: General Topology. Heldermann Verlag, Berlin 1989. | MR | Zbl

[28] Ertuğrul, Ü., Kesicioğlu, M., Karaçal, F.: Construction methods for uni-nullnorms and null-uninorms on bounded lattice. Kybernetika 55 (2019), 994-1015. | DOI | MR

[29] Everett, C. J.: Closure operators, Galois theory in lattices. Trans. Am. Math. Soc. 55 (1944), 514-525. | DOI | MR

[30] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5 (1997), 411-427. | DOI | MR | Zbl

[31] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23 (2015), 872-884. | DOI

[32] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators. Int. J. Approx. Reason. 136 (2021), 1-13. | DOI | MR

[33] Homenda, W., Jastrzebska, A., Pedrycz, W.: Multicriteria decision making inspired by human cognitive processes. Appl. Math. Comput. 290 (2016), 392-411. | DOI | MR

[34] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms. Fuzzy Sets Syst. 427 (2022), 109-131. | DOI | MR

[35] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for t-norms on subintervals to t-norms on bounded lattices. Kybernetika 55 (2019), 976-993. | DOI | MR

[36] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Syst. 261 (2015), 33-43. | DOI | MR

[37] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. | MR | Zbl

[38] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: Basic analytical and algebraic properties. Fuzzy Sets Syst. 143 (2004), 5-26. | DOI | MR

[39] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: General constructions and parametrized families. Fuzzy Sets Syst. 145 (2004), 411-438. | DOI | MR

[40] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices. Fuzzy Sets Syst. 202 (2012), 75-88. | DOI | MR

[41] Menger, K.: Statistical metrics. PNAS 8 (1942), 535-537. | DOI | MR | Zbl

[42] Metcalfe, G., Montagna, F.: Substructural fuzzy logics. J. Symb. Log. 72 (2007), 834-864. | DOI | MR

[43] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice. Fuzzy Sets Syst. 395 (2020), 93-106. | DOI | MR

[44] Sun, X. R., Liu, H. W.: Further characterization of uninorms on bounded lattices. Fuzzy Sets Syst. 427 (2022), 96-108. | DOI | MR

[45] Saminger, S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets Syts. 157 (2006), 1403-1416. | DOI | MR | Zbl

[46] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. | MR | Zbl

[47] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities. Publ. Math. 8 (1961), 169-186. | MR

[48] Takács, M.: Uninorm-based models for FLC systems. J. Intell. Fuzzy Syst. 19 (2008), 65-73.

[49] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Syst. 67 (1994), 129-145. | DOI | MR

[50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Syst. 80 (1996), 111-120. | DOI | MR | Zbl

[51] Yager, R. R.: Uninorms in fuzzy systems modelling. Fuzzy Sets Syst. 122 (2001), 167-175. | DOI | MR

[52] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making. Fuzzy Sets Syst. 140 (2003), 331-339. | MR | Zbl

[53] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices. Int. J. Approx. Reason. 130 (2021), 22-49. | DOI | MR

Cité par Sources :