Keywords: effect algebra; state of effect algebra
@article{10_14736_kyb_2023_5_0737,
author = {Bi\'nczak, Grzegorz and Kaleta, Joanna and Zembrzuski, Andrzej},
title = {Matrix representation of finite effect algebras},
journal = {Kybernetika},
pages = {737--751},
year = {2023},
volume = {59},
number = {5},
doi = {10.14736/kyb-2023-5-0737},
mrnumber = {4681020},
zbl = {07790659},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/}
}
TY - JOUR AU - Bińczak, Grzegorz AU - Kaleta, Joanna AU - Zembrzuski, Andrzej TI - Matrix representation of finite effect algebras JO - Kybernetika PY - 2023 SP - 737 EP - 751 VL - 59 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/ DO - 10.14736/kyb-2023-5-0737 LA - en ID - 10_14736_kyb_2023_5_0737 ER -
%0 Journal Article %A Bińczak, Grzegorz %A Kaleta, Joanna %A Zembrzuski, Andrzej %T Matrix representation of finite effect algebras %J Kybernetika %D 2023 %P 737-751 %V 59 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/ %R 10.14736/kyb-2023-5-0737 %G en %F 10_14736_kyb_2023_5_0737
Bińczak, Grzegorz; Kaleta, Joanna; Zembrzuski, Andrzej. Matrix representation of finite effect algebras. Kybernetika, Tome 59 (2023) no. 5, pp. 737-751. doi: 10.14736/kyb-2023-5-0737
[1] Bush, P., Lahti, P. J., Mittelstadt, P.: The quantum theory of measurement. In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991. | DOI | MR
[2] Bush, P., Grabowski, M., Lahti, P. J.: Operational Quantum Physics. Springer-Verlag, Berlin 1995. | DOI | MR
[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000. | DOI | MR | Zbl
[4] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352. | DOI | MR | Zbl
[5] Giuntini, R., Grueuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945. | DOI | MR
[6] Greechie, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119-132. | DOI | MR
[7] Gudder, S.: Effect test spaces and effect algebras. Found. Phys. 27 (1997), 287-304. | DOI | MR
[8] Kopka, F., Chovanec, F.: $D$-posets. Math. Slovaca 44 (1994), 21-34. | MR
[9] Maxima: Maxima. https://maxima.sourceforge.io
[10] Riečanová, Z.: Proper Effect Algebras Admitting No States. Int. J. Theoret. Physics 40 (2001), 10, 1683-1691. | DOI | MR
[11] Ji, Wei: Characterization of homogeneity in orthocomplete atomic effect algebras. Fuzzy Sets Systems 236 (2014), 113-121. | DOI | MR
[12] Wikipedia: Rouché-Capelli theorem. https://en.wikipedia.org/wiki/Rouché-Capelli_theorem
Cité par Sources :