Matrix representation of finite effect algebras
Kybernetika, Tome 59 (2023) no. 5, pp. 737-751
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.
In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra $E$ we construct set of matrices $M(E)$ in such a way that effect algebras $E_1$ and $E_2$ are isomorphic if and only if $M(E_1)=M(E_2)$. The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most $8$.
DOI : 10.14736/kyb-2023-5-0737
Classification : 81P10, 81P15
Keywords: effect algebra; state of effect algebra
@article{10_14736_kyb_2023_5_0737,
     author = {Bi\'nczak, Grzegorz and Kaleta, Joanna and Zembrzuski, Andrzej},
     title = {Matrix representation of finite effect algebras},
     journal = {Kybernetika},
     pages = {737--751},
     year = {2023},
     volume = {59},
     number = {5},
     doi = {10.14736/kyb-2023-5-0737},
     mrnumber = {4681020},
     zbl = {07790659},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/}
}
TY  - JOUR
AU  - Bińczak, Grzegorz
AU  - Kaleta, Joanna
AU  - Zembrzuski, Andrzej
TI  - Matrix representation of finite effect algebras
JO  - Kybernetika
PY  - 2023
SP  - 737
EP  - 751
VL  - 59
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/
DO  - 10.14736/kyb-2023-5-0737
LA  - en
ID  - 10_14736_kyb_2023_5_0737
ER  - 
%0 Journal Article
%A Bińczak, Grzegorz
%A Kaleta, Joanna
%A Zembrzuski, Andrzej
%T Matrix representation of finite effect algebras
%J Kybernetika
%D 2023
%P 737-751
%V 59
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-5-0737/
%R 10.14736/kyb-2023-5-0737
%G en
%F 10_14736_kyb_2023_5_0737
Bińczak, Grzegorz; Kaleta, Joanna; Zembrzuski, Andrzej. Matrix representation of finite effect algebras. Kybernetika, Tome 59 (2023) no. 5, pp. 737-751. doi: 10.14736/kyb-2023-5-0737

[1] Bush, P., Lahti, P. J., Mittelstadt, P.: The quantum theory of measurement. In: The Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer, Berlin, Heidelberg 1991. | DOI | MR

[2] Bush, P., Grabowski, M., Lahti, P. J.: Operational Quantum Physics. Springer-Verlag, Berlin 1995. | DOI | MR

[3] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic Publ./Ister Science, Dordrecht-Boston-London/Bratislava 2000. | DOI | MR | Zbl

[4] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352. | DOI | MR | Zbl

[5] Giuntini, R., Grueuling, H.: Toward a formal language for unsharp properties. Found. Phys. 19 (1989), 931-945. | DOI | MR

[6] Greechie, R. J.: Orthomodular lattices admitting no states. J. Combinat. Theory 10 (1971), 119-132. | DOI | MR

[7] Gudder, S.: Effect test spaces and effect algebras. Found. Phys. 27 (1997), 287-304. | DOI | MR

[8] Kopka, F., Chovanec, F.: $D$-posets. Math. Slovaca 44 (1994), 21-34. | MR

[9] Maxima: Maxima. https://maxima.sourceforge.io

[10] Riečanová, Z.: Proper Effect Algebras Admitting No States. Int. J. Theoret. Physics 40 (2001), 10, 1683-1691. | DOI | MR

[11] Ji, Wei: Characterization of homogeneity in orthocomplete atomic effect algebras. Fuzzy Sets Systems 236 (2014), 113-121. | DOI | MR

[12] Wikipedia: Rouché-Capelli theorem. https://en.wikipedia.org/wiki/Rouché-Capelli_theorem

Cité par Sources :