Keywords: time-delay systems; state feedback controller; Lyapunov–Krasovskii functional; Wirtinger's inequality; reciprocally convex inequality; linear matrix inequality
@article{10_14736_kyb_2023_4_0633,
author = {Modala, Venkatesh and Patra, Sourav and Ray, Goshaidas},
title = {An improved delay-dependent stabilization criterion of linear time-varying delay systems: {An} iterative method},
journal = {Kybernetika},
pages = {633--654},
year = {2023},
volume = {59},
number = {4},
doi = {10.14736/kyb-2023-4-0633},
mrnumber = {4660382},
zbl = {07790654},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-4-0633/}
}
TY - JOUR AU - Modala, Venkatesh AU - Patra, Sourav AU - Ray, Goshaidas TI - An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method JO - Kybernetika PY - 2023 SP - 633 EP - 654 VL - 59 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-4-0633/ DO - 10.14736/kyb-2023-4-0633 LA - en ID - 10_14736_kyb_2023_4_0633 ER -
%0 Journal Article %A Modala, Venkatesh %A Patra, Sourav %A Ray, Goshaidas %T An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method %J Kybernetika %D 2023 %P 633-654 %V 59 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-4-0633/ %R 10.14736/kyb-2023-4-0633 %G en %F 10_14736_kyb_2023_4_0633
Modala, Venkatesh; Patra, Sourav; Ray, Goshaidas. An improved delay-dependent stabilization criterion of linear time-varying delay systems: An iterative method. Kybernetika, Tome 59 (2023) no. 4, pp. 633-654. doi: 10.14736/kyb-2023-4-0633
[1] Badri, P., Sojoodi, M.: LMI-based robust stability and stabilization analysis of fractional-order interval systems with time-varying delay. Int. J. General Systems 51 (2022), 1, 1-26. | DOI | MR
[2] Chen, Y., Fei, S., Li, Y.: Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback. Automatica 52 (2015), 242-247. | DOI | MR
[3] Dastaviz, A., Binazadeh, T.: Simultaneous stabilization for a collection of uncertain time-delay systems using sliding-mode output feedback control. In. J. Control 93 (2020), 9, 2135-2144. | DOI | MR
[4] Dey, R., Ghosh, S., Gyurkovics, E., Ray, G.: Delay-interval-dependent stability criterion for linear systems with time-varying state delay. IFAC PapersOnLine 48 (2015), 14, 120-125. | DOI
[5] Dey, R., Ghosh, S., Ray, G., Rakshit, A.: Improved delay-dependent stabilization of time-delay systems with actuator saturation. Int. J. Robust Nonlinear Control 24 (2014), 5, 902-917. | DOI | MR
[6] Dey, R., Ray, G., Balas, V. E.: Stability and stabilization of linear and fuzzy time-delay systems: A linear matrix inequality approach. Springe, 2018. | MR
[7] Ghaoui, L. El, Oustry, F., AitRami, M.: A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Automat. Control 42, (1997), 8, 1171-1176. | DOI | MR
[8] Fridman, E., Shaked, U.: An improved stabilization method for linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 11, 1931-1937. | DOI | MR
[9] Fridman, E., Shaked, U.: Delay-dependent stability and $H_\infty$ control: constant and time-varying delay. Int. J. Control 76 (2003), 1, 48-60. | DOI | MR
[10] Gao, H., Wang, C.: Comments and further results on "A descriptor system approach to $H_\infty$ control of linear time-delay systems. IEEE Trans. Automat. Control 48 (2003), 3, 520-525. | DOI | MR
[11] Gahinet, P., Nemirovskii, A., Laub, A. J., Chilali, M.: LMI Control Toolbox for use with MATLAB. MathWorks, Natick 1995.
[12] Gu, K., Kharitonov, V. L., Chen, J.: Stability Analysis of Time-delay Systems. Birkhauser, Boston 2003. | MR
[13] Gu, K., Niculescu, S. I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Sys. Meas. Control 125 (2003), 2, 158-165. | DOI
[14] He, Y., Wang, Q. G., Chong, L., Min, W.: Delay-range dependent stability for systems with time-varying delay. Automatica 43 (2007), 2, 371-376. | DOI | MR
[15] Kim, J. H.: Note on stability of linear systems with time-varying delays. Automatica 47 (2011), 9, 2118-2121. | DOI | MR
[16] Kim, K. H., Park, M. J., Kwon, O. M., Lee, S. M., Cha, E. J.: Stability and robust $H_\infty$ control for time-delayed systems with parameter uncertainties and stochastic disturbances. J. Engrg. Technol. 11 (2016), 1, 200-214.
[17] Li, T., Guo, L., Zhang, Y.: Delay range dependent robust stability and stabilization for uncertain systems with time-varying delay. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 18 (2008), 13, 1372-1387. | DOI | MR
[18] Li, L., Jia, Y.: Non-fragile dynamic output feedback control for linear systems with time-varying delay. IET Control Theory Appl. 3 (2009), 8, 995-1005. | DOI | MR
[19] Moon, Y. S., Park, P. G., Kwon, W. H., Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74 (2001), 14, 1447-1455. | DOI | MR
[20] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays. IEEE Trans. Automat. Control 44 (1999), 4, 876-877. | DOI | MR
[21] Park, P. G., Ko, J. W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47 (2011), 1, 235-238. | DOI | MR
[22] Ramakrishnan, K., Ray, G.: An improved delay-dependent stability criterion for a class of Lur'e systems of neutral type. J. Dynamic Systems Measurement Control 134 (2012), 011008, 1-5. | DOI
[23] Parlakci, M. A.: Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems. Int. J. Robust Nonlinear Control: IFAC-Affiliated J. 16 (2006), 13, 599-636. | DOI | MR
[24] Prasad, K. C. Rajendra, Arun, N. K., Venkatesh, M.: An improved stabilization criteria for linear systems with time-varying delay using a new Lyapunov-Krasovskii functional. In: Control and Measurement Applications for Smart Grid; Springer, Singapore 2022, pp. 335-346.
[25] Richard, J. P.: Time-delay systems: An overview of some recent advances and open problems. Automatica 39 (2003), 10, 1667-1694. | DOI | MR | Zbl
[26] Seuret, A., Gouaisbaut, F.: Wirtinger based integral inequality: Application to time-delay systems. Automatica 49 (2013), 9, 2860-2866. | DOI | MR
[27] Seuret, A., Gouaisbaut, F.: Stability of linear systems with time-varying delays using Bessel-Legendre inequalities. IEEE Trans. Automat. Control. 63 (2018), 1, 225-232. | DOI | MR
[28] Sun, J., Liu, G. P., Chen, J.: Delay-dependent stability and stabilization of neutral time-delay systems. Int. Robust Nonlinear Control 19 (2009), 1364-1375. | DOI | MR
[29] Venkatesh, M., Patra, S., Ramakrishnan, K., Ray, G.: An improved stability result for linear time-delay system using a new Lyapunov-Krasovskii functional and extended reciprocally convex inequality. Int. J. Systems Sci. 49 (2018), 12, 2586-2600. | DOI | MR
[30] Venkatesh, M., Patra, S., Ray, G.: Stabilization of uncertain linear system with time-varying delay using a new Lyapunov-Krasovskii functional. In: IEEE Tencon 10 Conference 2018, pp. 205-210. | DOI
[31] Venkatesh, M., Patra, S., Ray, G.: Observer-based stabilization of linear discrete time-varying delay systems. J. Dynamic Systems Measurement Control 143 (2021), 12, 124501. | DOI
[32] Venkatesh, M., Patra, S., Ray, G.: Improved robust stability analysis and stabilization conditions for discrete-time linear systems with time-varying delay. Int. J. Automat. Control 16 (2022), 5, 547-572. | DOI
[33] Wang, C., Zhou, X., Shi, X., Jin, Y.: Robust control for uncertain variable fractional order differential systems considering time-varying delays and nonlinear perturbations. Optimal Control Appl. Methods 43 (2022), 3, 979-993. | DOI | MR
[34] Wu, M., He, Y., She, J. H.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Automat. Control 49 (2014), 12, 2266-2271. | DOI | MR
[35] Zhang, C. K., He, Y., Jiang, L., Wu, M., Wang, Q. G.: An extended reciprocally convex matrix inequality for stability analysis of systems with time-varying delay. Automatica 85 (2017), 481-485. | DOI | MR
[36] Zhang, X. M., Han, Q. L.: New stability criterion using a matrix-based quadratic convex approach and some novel integralX inequalities. IET Control Theory Appl. 8 (2014), 12, 1054-1061. | DOI | MR
[37] Zhang, X. M., Wu, M., She, J. H., He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41 (2005), 1405-1412. | DOI | MR
[38] Zhang, J., Xia, Y., Shi, P., Mahmoud, M. S.: New results on stability and stabilisation of systems with interval time-varying delay. IET Control Theory Appl. 5 (2011), 3, 429-436. | DOI | MR
Cité par Sources :