Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions
Kybernetika, Tome 59 (2023) no. 3, pp. 342-364
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a fixed-time safe control problem is investigated for an uncertain high-order nonlinear pure-feedback system with state constraints. A new nonlinear transformation function is firstly proposed to handle both the constrained and unconstrained cases in a unified way. Further, a radial basis function neural network is constructed to approximate the unknown dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed to facilitate the fixed-time control design for the uncertain high-order pure-feedback system. Combined with the proposed unified transformation function and the FDSC technique, an adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The novel original results of the paper allow to design the independent unified flexible fixed-time control strategy taking into account the actual possible constraints, either present or missing. Numerical examples are presented to demonstrate the proposed fixed-time tracking control strategy.
In this paper, a fixed-time safe control problem is investigated for an uncertain high-order nonlinear pure-feedback system with state constraints. A new nonlinear transformation function is firstly proposed to handle both the constrained and unconstrained cases in a unified way. Further, a radial basis function neural network is constructed to approximate the unknown dynamics in the system and a fixed-time dynamic surface control (FDSC) technique is developed to facilitate the fixed-time control design for the uncertain high-order pure-feedback system. Combined with the proposed unified transformation function and the FDSC technique, an adaptive fixed-time control strategy is proposed to guarantee the fixed-time tracking. The novel original results of the paper allow to design the independent unified flexible fixed-time control strategy taking into account the actual possible constraints, either present or missing. Numerical examples are presented to demonstrate the proposed fixed-time tracking control strategy.
DOI : 10.14736/kyb-2023-3-0342
Classification : 70K20, 93D15
Keywords: fixed-time safe control; nonlinear pure-feedback systems; state constrains; dynamic surface control; unified transformation function
@article{10_14736_kyb_2023_3_0342,
     author = {Guo, Chaoqun and Hu, Jiangping and Hao, Jiasheng and \v{C}elikovsk\'y, Sergej and Hu, Xiaoming},
     title = {Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions},
     journal = {Kybernetika},
     pages = {342--364},
     year = {2023},
     volume = {59},
     number = {3},
     doi = {10.14736/kyb-2023-3-0342},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0342/}
}
TY  - JOUR
AU  - Guo, Chaoqun
AU  - Hu, Jiangping
AU  - Hao, Jiasheng
AU  - Čelikovský, Sergej
AU  - Hu, Xiaoming
TI  - Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions
JO  - Kybernetika
PY  - 2023
SP  - 342
EP  - 364
VL  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0342/
DO  - 10.14736/kyb-2023-3-0342
LA  - en
ID  - 10_14736_kyb_2023_3_0342
ER  - 
%0 Journal Article
%A Guo, Chaoqun
%A Hu, Jiangping
%A Hao, Jiasheng
%A Čelikovský, Sergej
%A Hu, Xiaoming
%T Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions
%J Kybernetika
%D 2023
%P 342-364
%V 59
%N 3
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-3-0342/
%R 10.14736/kyb-2023-3-0342
%G en
%F 10_14736_kyb_2023_3_0342
Guo, Chaoqun; Hu, Jiangping; Hao, Jiasheng; Čelikovský, Sergej; Hu, Xiaoming. Fixed-time safe tracking control of uncertain high-order nonlinear pure-feedback systems via unified transformation functions. Kybernetika, Tome 59 (2023) no. 3, pp. 342-364. doi: 10.14736/kyb-2023-3-0342

[1] Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47 (2009), 1814-1850. | DOI | MR

[2] Bhat, S., Bernstein, D.: Geometric homogeneity with applications to finite-time stability. Math. Control Signals Syst. 17 (2005), 101-127. | DOI | MR | Zbl

[3] Cao, Y., Wen, C., Song, Y.: A unified event-triggered control approach for uncertain pure-feedback systems with or without state constraints. IEEE Trans. Cybernet. 51 (2021), 1262-1271. | DOI

[4] Čelikovský, S., Anderle, M., Vyhlídal, T.: Virtual nonholonomic constraints to damp the varying length pendulum swing. In: IEEE Conference on Decision and Control (CDC) 2021, pp. 3893-3900. | DOI

[5] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems. Syst. Control Lett. 36 (1999), 21-37. | DOI | MR

[6] Chen, B., Hu, J., Zhao, Y., Ghosh, B. K.: Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans. Syst. Man Cybernet. Syst. 52 (2022), 6618-6629. | DOI

[7] Cui, E., Jing, Y., Gao, X.: Full state constraints control of switched complex networks based on time-varying barrier Lyapunov functions. IET Control Theory Appl. 14 (2020), 2419-2428. | DOI | MR

[8] Fang, L., Ding, S., Park, J. H., Ma, L.: Adaptive fuzzy output-feedback control design for a class of p-norm stochastic nonlinear systems with output constraints. IEEE Trans. Circuits Syst. I, Reg. Papers 68 (2021), 2626-2638. | DOI | MR

[9] Filippov, A. F.: Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 154 (1998), 99-128. | MR

[10] Gómez-Gutiérrez, D., Vázquez, C. R., Čelikovský, S., Sánchez-Torres, J. D., Ruiz-León, J.: On finite-time and fixed-time consensus algorithms for dynamic networks switching among disconnected digraphs. Int. J. Control 93 (2020), 2120-2134. | DOI | MR

[11] Guiochet, J., Machin, M., Waeselynck, H.: Safety-critical advanced robots: A survey. Robotics Autonomous Systems 94 (2017), 43-52. | DOI

[12] Guo, C., Hu, J.: Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance. IEEE Trans. Circuits Syst. II, Exp. Briefs (2023). | DOI

[13] Guo, C., Hu, J.: Fixed-time stabilization of high-order uncertain nonlinear systems: output feedback control design and settling time analysis. J. Syst. Sci. Complex (2023), To appear. | MR

[14] Hong, Y., Jiang, Z.: Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties. IEEE Trans. Automat. Control 51 (2006), 1950-1956. | DOI | MR

[15] Hu, C., Qin, W., Li, Z., He, B., Liu, G.: Consensus-based state estimation for multi-agent systems with constraint information. Kybernetika 53 (2017), 545-561. | DOI | MR

[16] Jin, X., Xu, J. X.: Iterative learning control for output-constrained systems with both parametric and nonparametric uncertainties. Automatica 49 (2013), 2508-2516. | DOI | MR

[17] Krstic, M., Kokotovic, P. V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. John Wiley and Sons, Inc. 1995.

[18] Li, Y. X.: Barrier Lyapunov function-based adaptive asymptotic tracking of nonlinear systems with unknown virtual control coefficients. Automatica 121 (2020), 109181. | DOI | MR

[19] Li, J., Yang, Y., Hua, C., Guan, X.: Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode. IET Control Theory Appl. 11 (2017), 1184-1193. | DOI | MR

[20] Liu, B., Hou, M., Ni, J., Li, Y., Wu, Z.: Asymmetric integral barrier Lyapunov function-based adaptive tracking control considering full-state with input magnitude and rate constraint. J. Franklin Inst. 357 (2020), 9709-9732. | DOI | MR

[21] Liu, Y., Zhang, H., Sun, J., Wang, Y.: Adaptive fuzzy containment control for multiagent systems with state constraints using unified transformation functions. IEEE Trans. Fuzzy Syst. 30 (2022), 162-174. | DOI

[22] Liu, Y., Zhang, H., Wang, Y., Yu, S.: Fixed-time cooperative control for robotic manipulators with motion constraints using unified transformation function. Int. J. Robust Nonlinear Control 31 (2021), 6826-6844. | DOI | MR

[23] Ma, J., Hu, J.: Safe consensus control of cooperative-competitive multi-agent systems via differential privacy. Kybernetika 58 (2022), 426-439. | DOI | MR

[24] Ou, M., Sun, H., Zhang, Z., Li, L., Wang, X.: Fixed-time tracking control for nonholonomic mobile robot. Kybernetika 57 (2021), 220-235. | DOI | MR

[25] Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Automat. Control 57 (2012), 2106-2110. | DOI | MR

[26] Tang, Z., Ge, S. S., Tee, K. P., He, W.: Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE Trans. Syst., Man, Cybern., Syst. 46 (2016), 1618-1629. | DOI | MR

[27] Tian, B., Lu, H., Zuo, Z.: Fixed-time stabilization of high-order integrator systems with mismatched disturbances. Nonlinear Dynam. 94 (2018), 2889-2899. | DOI

[28] Wu, Z., Guo, J., Liu, B., Ni, J., Bu, X.: Composite learning adaptive dynamic surface control for uncertain nonlinear strict-feedback systems with fixed-time parameter estimation under sufficient excitation. Int. J. Robust Nonlinear Control 31 (2021), 5865-5889. | DOI | MR

[29] Yang, H., Ye, D.: Adaptive fault-tolerant fixed-time tracking consensus control for high-order unknown nonlinear multi-agent systems with performance constraint. J. Franklin Inst. 357 (2020), 11448-11471. | DOI | MR

[30] Zhang, T., Xia, M., Yi, Y.: Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics. Automatica 81 (2017), 232-239. | DOI | MR

[31] Zhao, K., Song, Y.: Removing the feasibility conditions imposed on tracking control designs for state-constrained strict-feedback systems. IEEE Trans. Automat. Control 64 (2019), 1265-1272. | DOI | MR

Cité par Sources :