A family of Lyapunov-based control schemes for maximum power point tracking in buck converters
Kybernetika, Tome 59 (2023) no. 2, pp. 294-313
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero, thus implying that the MPPT is achieved. Simulation and real-time results are presented, which validate the effectiveness of the proposals.
This paper presents a novel family of Lyapunov-based controllers for the maximum power point tracking problem in the buck converter case. The solar power generation system here considered is composed by a stand-alone photovoltaic panel connected to a DC/DC buck converter. Lyapunov function candidates depending on the output are considered to develop conditions which, in some cases, can be expressed as linear matrix inequalities; these conditions guarantee that the output goes asymptotically to zero, thus implying that the MPPT is achieved. Simulation and real-time results are presented, which validate the effectiveness of the proposals.
DOI : 10.14736/kyb-2023-2-0294
Classification : 47N70, 93C10, 93D30
Keywords: solar energy; photovoltaic panel; maximum power point tracking; Lyapunov method; convex model; linear matrix inequalities
@article{10_14736_kyb_2023_2_0294,
     author = {\'Alvarez, Jorge and Ruiz, Jorge and Bernal, Miguel},
     title = {A family of {Lyapunov-based} control schemes for maximum power point tracking in buck converters},
     journal = {Kybernetika},
     pages = {294--313},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.14736/kyb-2023-2-0294},
     mrnumber = {4600379},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0294/}
}
TY  - JOUR
AU  - Álvarez, Jorge
AU  - Ruiz, Jorge
AU  - Bernal, Miguel
TI  - A family of Lyapunov-based control schemes for maximum power point tracking in buck converters
JO  - Kybernetika
PY  - 2023
SP  - 294
EP  - 313
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0294/
DO  - 10.14736/kyb-2023-2-0294
LA  - en
ID  - 10_14736_kyb_2023_2_0294
ER  - 
%0 Journal Article
%A Álvarez, Jorge
%A Ruiz, Jorge
%A Bernal, Miguel
%T A family of Lyapunov-based control schemes for maximum power point tracking in buck converters
%J Kybernetika
%D 2023
%P 294-313
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0294/
%R 10.14736/kyb-2023-2-0294
%G en
%F 10_14736_kyb_2023_2_0294
Álvarez, Jorge; Ruiz, Jorge; Bernal, Miguel. A family of Lyapunov-based control schemes for maximum power point tracking in buck converters. Kybernetika, Tome 59 (2023) no. 2, pp. 294-313. doi: 10.14736/kyb-2023-2-0294

[1] Abdelaziz, A. Y., Almoataz, Y.: Modern Maximum Power Point Tracking Techniques for Photovoltaic Energy Systems. Springer, 2020.

[2] Algazar, M. M, El-Halim, H. A., Salem, M. E. El Kotb, al., et: Maximum power point tracking using fuzzy logic control. Int. J. Electr.Power Energy Systems 39 (2012), 1, 21-28. | DOI

[3] Artstein, Z.: Stabilization with relaxed controls. Nonlinear Analysis: Theory Methods Appl. 7 (1983), 11, 1163-1173. | DOI | MR | Zbl

[4] Bahgat, A. B. G., Helwa, N. H., Ahmad, G. E., Shenawy, E. T. El: Maximum power point traking controller for pv systems using neural networks. Renewable Energy 30 (2008), 8, 1257-1268. | DOI

[5] Benedek, J., Sebestyén, T.-T., Bartók, B.: Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development. Renewable Sustainable Energy Rev. 90 (2018), 516-535. | DOI

[6] Bernal, M., Hušek, P., Kučera, V.: Non quadratic stabilization of continuous-time systems in the Takagi-Sugeno form. Kybernetika 42 (2006), 6, 665-672. | DOI | MR

[7] Bernal, M., Sala, A., Lendek, Z., Guerra, T. M.: Analysis and Synthesis of Nonlinear Control Systems: A Convex Optimisation Approach. Springer, Cham 2022. | MR

[8] Bharath, K. R., Suresh, E.: Design and implementation of improved fractional open circuit voltage based maximum power point tracking algorithm for photovoltaic applications. Int. J. Renewable Energy Ress. (IJRER) 7 (2017), 3, 1108-1113.

[9] Boyd, S., ElGhaoui, L., Féron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics 15, Philadelphia 1994. | MR

[10] Chiu, Ch. S.: Ts fuzzy maximum power point tracking control of solar power generation systems. IEEE Trans. Energy Convers. 25 (2010). 4, 1123-1132. | DOI

[11] Chiu, Ch. S., Ouyang, Y. L.: Robust maximum power tracking control of uncertain photovoltaic systems: A unified ts fuzzy model-based approach. IEEE Trans. Control Systems Technol. 19 (2011), 6, 1516-1526. | DOI

[12] M, Z., Dalala, Zahid, Z. U., Yu, W., Cho, Y., Lai, J.-S.: Design and analysis of an mppt technique for small-scale wind energy conversion systems. IEEE Trans. Energy Convers. 28 (2013), 3, 756-767. | DOI

[13] Elgendy, M. A., Zahawi, B., Atkinson, D. J.: Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans. Sustainable Energy 4 (2012), 1, :108-117. | DOI

[14] Faranda, R., Leva, S., Maugeri, V.: MPPT techniques for PV systems: Energetic and cost comparison. In: 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,IEEE 2008, pp. 1-6.

[15] Gahinet, P., Nemirovsky, A., Laub, A. J., Chilali, M.: LMI Control Toolbox. Math Works, Natick 1995.

[16] Gupta, A. K., Saxena, R.: Review on widely-used MPPT techniques for PV applications. In: 2016 International Conference on Innovation and Challenges in Cyber Security (ICICCS-INBUSH), IEEE 2016, pp. 270-273. | DOI

[17] Khalil, H. K.: Nonlinear Control. Pearson Higher Ed, 2014.

[18] Lalili, D., Mellit, A., Lourci, N., Medjahed, B., Berkouk, E. M.: Input output feedback linearization control and variable step size mppt algorithm of a grid-connected photovoltaic inverter. Renewable Energy 36 (2011), 12, 3282-3291. | DOI

[19] Mahmoud, Y., Abdelwahed, M., El-Saadany, E. F.: An enhanced mppt method combining model-based and heuristic techniques. IEEE Trans. Sustainable Energy 7 (2015), 2, 76-585.

[20] Mao, M., Zhang, L., Yang, L., Chong, B., Huang, H., Zhou, L.: MPPT using modified salp swarm algorithm for multiple bidirectional pv-ćuk converter system under partial shading and module mismatching. Solar Energy 209 (2020), 334-349. | DOI

[21] Mokhtari, Y., Rekioua, D.: High performance of maximum power point tracking using ant colony algorithm in wind turbine. Renewable Energy 126 (2018), 1055-1063. | DOI

[22] Owusu, P. A., Asumadu-Sarkodie, S.: A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engrg. 3 (2016), 1, 1167990. | DOI

[23] Pandey, A., Dasgupta, N., Mukerjee, A. K.: High-performance algorithms for drift avoidance and fast tracking in solar mppt system.

[24] Pilakkat, D., Kanthalakshmi, S.: An improved p&o algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions. Solar Energy 178 (2019), 37-47. | DOI

[25] Qazi, A., Hussain, F., Rahim, N. A. B. D., Hardaker, G., Alghazzawi, D., Shaban, K., Haruna, K.: Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions. IEEE Acess 7 (2019), 63837-63851. | DOI

[26] Salimi, M.: Practical implementation of the lyapunov based nonlinear controller in dc-dc boost converter for mppt of the pv systems. Solar Energy 173 (2018), 246-255. | DOI

[27] Sandali, A., Oukhoya, T., Cheriti, A.: Modeling and design of pv grid connected system using a modified fractional short-circuit current mppt. In: 2014 International Renewable and Sustainable Energy Conference (IRSEC), IEEE 2014, pp. 224-229.

[28] Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., Teodorescu, R.: On the perturb-and-observe and incremental conductance mppt methods for pv systems. IEEE J. Photovoltaics 3 (2013), 3, :1070-1078. | DOI

[29] Sokolov, M., Shmilovitz, D.: A modified mppt scheme for accelerated convergence. IEEE Trans. Energy Convers. 23 (2008), 4, 1105-1107. | DOI

[30] Sontag, E. D.: A universal construction of artstein's theorem on nonlinear stabilization. Systems Control Lett. 13 (1989), 2, 117-123. | DOI | MR

[31] Taniguchi, T., Tanaka, K., Wang, H. O.: Model contruction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Trans. Fuzzy Systems 9 (2001), 4, 525-538. | DOI

Cité par Sources :