Keywords: underactuated surface vessels; trajectory tracking; time-delay; external disturbances; sliding mode; backstepping; radial basis function(RBF)
@article{10_14736_kyb_2023_2_0273,
author = {Chen, Yun and Chen, Hua},
title = {Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode},
journal = {Kybernetika},
pages = {273--293},
year = {2023},
volume = {59},
number = {2},
doi = {10.14736/kyb-2023-2-0273},
mrnumber = {4600378},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0273/}
}
TY - JOUR AU - Chen, Yun AU - Chen, Hua TI - Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode JO - Kybernetika PY - 2023 SP - 273 EP - 293 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0273/ DO - 10.14736/kyb-2023-2-0273 LA - en ID - 10_14736_kyb_2023_2_0273 ER -
%0 Journal Article %A Chen, Yun %A Chen, Hua %T Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode %J Kybernetika %D 2023 %P 273-293 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0273/ %R 10.14736/kyb-2023-2-0273 %G en %F 10_14736_kyb_2023_2_0273
Chen, Yun; Chen, Hua. Prescribed performance control of underactuated surface vessels' trajectory using a neural network and integral time-delay sliding mode. Kybernetika, Tome 59 (2023) no. 2, pp. 273-293. doi: 10.14736/kyb-2023-2-0273
[1] Avila, J. P. J., Donha, D. C., Amowski, J. C. Ad: Experimental model identification of open-frame underwater vehicles. Ocean Engrg. 60 (2013), 81-94. | DOI
[2] Behtash, S.: Robust output tracking for non-linear systems. Int. J. Control 51 (1990), 6, 1381-1407. | DOI | MR
[3] Chen, H., Chen, Y., Wang, M.: Trajectory tracking for underactuated surface vessels with time delays and unknown control directions. IET Control Theory Appl. 16 (2022), 6, 587-599. | DOI
[4] Chen, W., Wei, Y., Zeng, J., Hu, J., Wang, Z.: Adaptive backstepping control of underactuated AUV based on disturbance observer. J. Central South University 48 (2017), 1, 69-76.
[5] Chu, Z., Zhu, D., Yang, S. X., E., G., Jan: Adaptive Sliding mode control for depth trajectory tracking of remotely operated vehicle with thruster nonlinearity. J. Navigation 70 (2017), 1, 149-164. | DOI
[6] Druzhinina, O., Sedova, N.: Optimization Problems in tracking control design for an underactuated ship with feedback delay, state and control constraints. Optim. Appl. 12422 (2020), 71-85. | DOI | MR
[7] Du, J., Li, J.: Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated autonomous underwater vehicles. Control Theory Appl. 39 (2022), 383-392. | DOI
[8] Feng, Z., Lam, J., Yang, G.-H.: Optimal partitioning method for stability analysis of continuous/discrete delay systems. Int. J. Robust Nonlinear Control 25 (2015), 4, 559-574. | DOI | MR
[9] Jia, Z., Hu, Z., Zhang, W.: Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels. ISA Trans. 95 (2019), 18-56. | DOI
[10] Jian, X., Man, W., Lei, Q.: Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engrg. 105 (2015), 54-63. | DOI
[11] Lakhekar, G. V., Waghmare, L. M.: Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle. Int. J. Dynamics Control 6.4 (2018), 1690-1705. | DOI | MR
[12] Liao, Z. Y., Dai, Y. S., Li, L. G., Jin, J. C., F., Shao: Overview of unmanned surface vehicle motion control methods. Marine Sci. 44 (2020), 3, 153-162.
[13] Liao, Y. L., Zhang, M. J., Wan, L., Li, Y.: Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties. J. Central South Univ. 23 (2016), 2, 370-378. | DOI
[14] Liu, Z.: Practical backstepping control for underactuated ship path following associated with disturbances. IET Intell. Transport Systems 13 (2018), 5, 834-840. | DOI
[15] Manley, J. E.: Unmanned surface vehicles, 15 years of development. Oceans (2008), Supplement, 1-4.
[16] Marco, B., Massimo, C., Lionel, L.: Path-following algorithms and experiments for an autonomous surface vehicle. IFAC Proc. Vol. 40 (2007), 17, 81-86. | DOI
[17] Min, Y., Liu, Y.: Barbalat Lemma and its application in analysis of system stability. J. Shandong Univ., Engrg. Sci. (2007), 51-55+114. | DOI
[18] Pastore, T., Djapic, V.: Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios. J. Field Robotics 27 (2010), 6, 903-914. | DOI
[19] Qijia, Y.: Robust fixed-time trajectory tracking control of marine surface vessel with feedforward disturbance compensation. Int. J. Systems Sci. 53 (2022), 4, 726-742. | DOI | MR
[20] Qiu, B., Wang, G., Fan, Y., Mu, D., Sun, X.: Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Appl. Sci. 9 (2019), 6, 1240. | DOI
[21] Qudrat, K., Rini, A.: Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems. Neurocomputing 226 (2017), 126-134. | DOI
[22] Ramakrishnan, K., Ray, G.: Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations. International Journal of Automation and Computing, vol.8.1, (2011), 141-146. | DOI | MR
[23] Wang, F., Chao, Z., Huang, L.: Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode. Cluster Comput. 22 (2019), 3, 5799-5809. | DOI
[24] Xu, D., Liu, Z., Zhou, X., Yang, L., Huang, L.: Trajectory tracking of underactuated unmanned surface vessels: non-singular terminal sliding control with nonlinear disturbance observer. Appl. Sci. 12 (2022), 6, 3004. | DOI
[25] Yu, L., Guoqing, Z., Lei, Q., Weidong, Z.: Adaptive output-feedback formation control for underactuated surface vessels. Int. J. Control 93 (2020), 3, 400-409. | DOI | MR
[26] Zhou, J., Xinyi, Z., Zhiguang, F., Di, W.: Trajectory tracking sliding mode control for underactuated autonomous underwater vehicles with time delays. Int. J. Advanced Robotic Systems 17 (2020), 3, 1729881420916276. | DOI
[27] Zhou, J., Zhao, X., Chen, T., Yan, Z., Yang, Z.: Trajectory tracking control of an underactuated AUV based on backstepping sliding mode with state prediction. IEEE Access 7 (2019), 181983-181993. | DOI
[28] Zou, L., Liu, H., Tian, X.: Robust neural network trajectory-tracking control of underactuated surface vehicles considering uncertainties and unmeasurable velocities. IEEE Access9 (2021), 117629-117638. | DOI
Cité par Sources :