Keywords: graph representation learning; feature learning; link prediction; node classification; anonymous random walk
@article{10_14736_kyb_2023_2_0234,
author = {Mohammed, Sarmad N. and G\"und\"u\c{c}, Semra},
title = {TPM: {Transition} probability matrix - {Graph} structural feature based embedding},
journal = {Kybernetika},
pages = {234--253},
year = {2023},
volume = {59},
number = {2},
doi = {10.14736/kyb-2023-2-0234},
mrnumber = {4600376},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0234/}
}
TY - JOUR AU - Mohammed, Sarmad N. AU - Gündüç, Semra TI - TPM: Transition probability matrix - Graph structural feature based embedding JO - Kybernetika PY - 2023 SP - 234 EP - 253 VL - 59 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0234/ DO - 10.14736/kyb-2023-2-0234 LA - en ID - 10_14736_kyb_2023_2_0234 ER -
%0 Journal Article %A Mohammed, Sarmad N. %A Gündüç, Semra %T TPM: Transition probability matrix - Graph structural feature based embedding %J Kybernetika %D 2023 %P 234-253 %V 59 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0234/ %R 10.14736/kyb-2023-2-0234 %G en %F 10_14736_kyb_2023_2_0234
Mohammed, Sarmad N.; Gündüç, Semra. TPM: Transition probability matrix - Graph structural feature based embedding. Kybernetika, Tome 59 (2023) no. 2, pp. 234-253. doi: 10.14736/kyb-2023-2-0234
[1] Albert, R., Barabási, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74 (2002), 47-97. | DOI | MR
[2] Barabási, A.: Network science. Phil. Trans. R. Soc. A. 371 (2013), 20120375. | DOI
[3] Barabási, A., Bonabeau, E.: Scale-free networks. Scientif. Amer. 288 (2003), 60-69. | DOI
[4] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., al., et: Relational inductive biases, deep learning, and graph networks. ArXiv, 2018. | arXiv
[5] Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics (C. Aggarwal, ed.), Springer, Boston 2011. | DOI | MR
[6] Buffelli, D., Vandin, F.: The impact of global structural information in graph neural networks applications. Data 7 (2022), 10. | DOI
[7] Cetin, P., Amrahov, S. Emrah: A new overlapping community detection algorithm based on similarity of neighbors in complex networks. Kybernetika 58 (2022), 277-300. | DOI | MR
[8] Cetin, P., Amrahov, Ş. E.: A new network-based community detection algorithm for disjoint communities. Turk. J. Electr. Eng. Co. 30 (2022), 2190-2205. | DOI
[9] Cherifi, H., Palla, G., Szymanski, B. K., Lu, X.: On community structure in complex networks: challenges and opportunities. Appl. Netw. Sci. 4 (2019), 1-35. | DOI | MR
[10] Chi, K., Yin, G., Dong, Y., Dong, H.: Link prediction in dynamic networks based on the attraction force between nodes. Knowledge-Based Systems 181 (2019), 0950-7051. | DOI
[11] Fortunato, S.: Community detection in graphs. Phys. Rep. 486 (2010), 75-174. | DOI | MR
[12] Giles, C. L., Bollacker, K. D., Lawrence, S.: CiteSeer: An automatic citation indexing system. In: Proc. Third ACM conference on Digital libraries, 1998, pp. 89-98.
[13] Girvan, M., Newman, M. E. J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99 (2002), 7821-7826. | DOI | MR
[14] Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2016, pp. 855-864. | DOI
[15] Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach 2017.
[16] Han, X., Wang, L., Cui, C., Ma, J., Zhang, S.: Linking multiple online identities in criminal investigations: A spectral co-clustering framework. IEEE Trans. Inf. Forensics Security 12 (2017), 2242-2255. | DOI
[17] Hanley, J. A., McNeil, B. J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982), 29-36. | DOI
[18] Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: Proc. 35th International Conference on Machine Learning, 2018, pp. 2186-2195.
[19] Khafaei, T., Taraghi, A. Tavakoli, Hosseinzadeh, M., Rezaee, A.: Tracing temporal communities and event prediction in dynamic social networks. Soc. Netw. Anal. Min. 9 (2019), 1-11. | DOI
[20] Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. , 2016. | arXiv
[21] Kossinets, G., Watts, D. J.: Empirical analysis of an evolving social network. Science 311 (2006), 88-90. | DOI | MR
[22] Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78 (2008), 046110. | DOI
[23] Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. In: Proc. twelfth international conference on Information and knowledge management, New Orleans 2003, pp. 556-559. | DOI
[24] Martínez, V., Berzal, F., Cubero, J.: A survey of link prediction in complex networks. ACM Comput. Surv. 49 (2016), 1-33. | DOI | MR
[25] McCallum, A. K., Nigam, K., Rennie, J., Seymore, K.: Automating the construction of internet portals with machine learning. Inform, Retrieval 3 (2000), 127-163. | DOI
[26] Mele, A.: A structural model of homophily and clustering in social networks. J. Bus. Econom. Statist. 40 (2022), 1377-1389. | DOI | MR
[27] Micali, S., Zhu, Z. A.: Reconstructing markov processes from independent and anonymous experiments. Discrete Appl. Math. 200 (2016), 108-122. | DOI | MR
[28] Mohammed, S. N., Gündüç, S.: Degree-based random walk approach for graph embedding. Turk. J. Electr. Eng. Co. 30 (2022), 1868-1881. | DOI
[29] Molokwu, B., Shuvo, S. B., Kar, N. C., Kobti, Z.: Node classification and link prediction in social graphs using RLVECN. In: 32nd International Conference on Scientific and Statistical Database Management, Vienna 2020, pp. 1-10. | DOI
[30] Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435 (2005), 814-818. | DOI
[31] Pavlopoulou, M. E. G., Tzortzis, G., Vogiatzis, D., Paliouras, G.: Predicting the evolution of communities in social networks using structural and temporal features. In: 12th International Workshop on Semantic and Social Media Adaptation and Personalization (SMAP), Bratislava 2017, pp. 40-45. | DOI
[32] Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations. In: Proc. 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York 2014, pp. 701-710. | DOI
[33] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Magazine 29 (2008), 93-93. | DOI
[34] Sun, K., Wang, L., Xu, B., Zhao, W., Teng, S. W., Xia, F.: Network representation learning: From traditional feature learning to deep learning. IEEE Access 8 (2020), 205600-205617. | DOI
[35] Tamassia, R.: Handbook of Graph Drawing and Visualization. (First edition. Chapman and Hall/CRC, New York 2013. | DOI | MR
[36] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 2015, pp. 1067-1077. | DOI
[37] Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. Stat. 20 (2017), 10-48550.
[38] Vencálek, O., Hlubinka, D.: A depth-based modification of the k-nearest neighbour method. Kybernetika 57 (2021), 15-37. | DOI | MR
[39] Xie, Y., Jin, P., Gong, M., Zhang, C., Yu, B.: Multi-task network representation learning. Front. Neurosci. 14 (2020), 1. | DOI | MR
[40] Xu, M.: Understanding graph embedding methods and their applications. SIAM Rev. 63 (2021), 825-853. | DOI | MR
[41] Zaki, M. J., Meira, W.: Data Mining and Analysis: Fundamental Concepts and Algorithms. Cambridge University Press, 2014.
[42] Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: A survey. IEEE Trans. Knowl. Data Eng. 34 (2020), 249-270. | DOI
[43] Zhang, X. M., Liang, L., Liu, L., Tang, M. J.: Graph neural networks and their current applications in bioinformatics. Front, Genetics 12 (2021), 690049. | DOI
Cité par Sources :