Access structures for finding characteristic-dependent linear rank inequalities
Kybernetika, Tome 59 (2023) no. 2, pp. 198-208
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Determining information ratios of access structures is an important problem in secret sharing. Information inequalities and linear rank inequalities play an important role for proving bounds on these ratios. Characteristic-dependent linear rank inequalities are rank inequalities which are true over vector spaces with specific field characteristic. In this paper, using ideas of secret sharing, we show a theorem that produces characteristic-dependent linear rank inequalities. These inequalities are then used for getting lower bounds on information ratios of some access structures in linear secret sharing.
Determining information ratios of access structures is an important problem in secret sharing. Information inequalities and linear rank inequalities play an important role for proving bounds on these ratios. Characteristic-dependent linear rank inequalities are rank inequalities which are true over vector spaces with specific field characteristic. In this paper, using ideas of secret sharing, we show a theorem that produces characteristic-dependent linear rank inequalities. These inequalities are then used for getting lower bounds on information ratios of some access structures in linear secret sharing.
DOI : 10.14736/kyb-2023-2-0198
Classification : 68P30, 94A15
Keywords: secret sharing; cryptography; access structures; matroids; complementary spaces; linear rank inequalities; entropy
@article{10_14736_kyb_2023_2_0198,
     author = {Pe\~na-Macias, Victor},
     title = {Access structures for finding characteristic-dependent linear rank inequalities},
     journal = {Kybernetika},
     pages = {198--208},
     year = {2023},
     volume = {59},
     number = {2},
     doi = {10.14736/kyb-2023-2-0198},
     mrnumber = {4600374},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0198/}
}
TY  - JOUR
AU  - Peña-Macias, Victor
TI  - Access structures for finding characteristic-dependent linear rank inequalities
JO  - Kybernetika
PY  - 2023
SP  - 198
EP  - 208
VL  - 59
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0198/
DO  - 10.14736/kyb-2023-2-0198
LA  - en
ID  - 10_14736_kyb_2023_2_0198
ER  - 
%0 Journal Article
%A Peña-Macias, Victor
%T Access structures for finding characteristic-dependent linear rank inequalities
%J Kybernetika
%D 2023
%P 198-208
%V 59
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-2-0198/
%R 10.14736/kyb-2023-2-0198
%G en
%F 10_14736_kyb_2023_2_0198
Peña-Macias, Victor. Access structures for finding characteristic-dependent linear rank inequalities. Kybernetika, Tome 59 (2023) no. 2, pp. 198-208. doi: 10.14736/kyb-2023-2-0198

[1] Blasiak, A., Kleinberg, R., Lubetzky, E.: Lexicographic products and the power of non-linear network coding. Ib: IEEE Symposium on Foundations of Computer Science 2011, pp. 609-618. | DOI | MR

[2] Brickell, E. F., Davenport, D. M.: On the classification of ideal secret sharing. J. Cryptology (1991), 4, 123-134. | DOI

[3] Dougherty, R., Freiling, C., Zeger, K.: Achievable Rate regions for network coding. IEEE Trans. Inform. Theory 61 (2015), 5, 2488-2509. | DOI | MR

[4] Farràs, O., Kaced, T., Martín, S., Padró, C.: Improving the linear programming technique in the search for lower bounds in secret sharing. IEEE Transactions on Information Theory 66 (2020), 11, 7088-7100. | DOI | MR

[5] Jafari, A., Khazaei, S.: On Abelian secret sharing: Duality and separation. IACR Cryptol. ePrint Archive (2019), 575. | MR

[6] Martín, S., Padró, C., Yang, A.: Secret Sharing, Rank Inequalities, and Information Inequalities. IEEE Trans. Inform. Theory 2 (2016), 1, 599-609. | DOI | MR

[7] Padró, C.: Lecture notes in secret sharing. Cryptology ePrint Archive: Report (2012), 674.

[8] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities via complementary vector spaces. J. Inform. Optim. Sci. 42 (2021), 2, 345-369. | DOI

[9] Peña-Macias, V., Sarria, H.: Characteristic-dependent linear rank inequalities in 21 variables. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 43 (2019), 169, 76-5-770. | DOI | MR

[10] Shen, A., Hammer, D., Romashchenko, A. E., Vereshchagin, N. K.: Inequalities for Shannon Entropy and Kolmogorov Complexity. J. Computer Systems Sci. 60 (2000), 442-464. | DOI | MR

Cité par Sources :