A note on the existence of Gibbs marked point processes with applications in stochastic geometry
Kybernetika, Tome 59 (2023) no. 1, pp. 130-159
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in $\mathbb{R}^d$ with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of $\mathbb{R}^2$. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point.
DOI :
10.14736/kyb-2023-1-0130
Classification :
60D05, 60G55
Keywords: infinite-volume Gibbs measure; existence; Gibbs facet process; Gibbs–Laguerre tessellation
Keywords: infinite-volume Gibbs measure; existence; Gibbs facet process; Gibbs–Laguerre tessellation
@article{10_14736_kyb_2023_1_0130,
author = {Petr\'akov\'a, Martina},
title = {A note on the existence of {Gibbs} marked point processes with applications in stochastic geometry},
journal = {Kybernetika},
pages = {130--159},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {2023},
doi = {10.14736/kyb-2023-1-0130},
mrnumber = {4567845},
zbl = {07675646},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/}
}
TY - JOUR AU - Petráková, Martina TI - A note on the existence of Gibbs marked point processes with applications in stochastic geometry JO - Kybernetika PY - 2023 SP - 130 EP - 159 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/ DO - 10.14736/kyb-2023-1-0130 LA - en ID - 10_14736_kyb_2023_1_0130 ER -
%0 Journal Article %A Petráková, Martina %T A note on the existence of Gibbs marked point processes with applications in stochastic geometry %J Kybernetika %D 2023 %P 130-159 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/ %R 10.14736/kyb-2023-1-0130 %G en %F 10_14736_kyb_2023_1_0130
Petráková, Martina. A note on the existence of Gibbs marked point processes with applications in stochastic geometry. Kybernetika, Tome 59 (2023) no. 1, pp. 130-159. doi: 10.14736/kyb-2023-1-0130
Cité par Sources :