A note on the existence of Gibbs marked point processes with applications in stochastic geometry
Kybernetika, Tome 59 (2023) no. 1, pp. 130-159.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in $\mathbb{R}^d$ with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of $\mathbb{R}^2$. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point.
DOI : 10.14736/kyb-2023-1-0130
Classification : 60D05, 60G55
Keywords: infinite-volume Gibbs measure; existence; Gibbs facet process; Gibbs–Laguerre tessellation
@article{10_14736_kyb_2023_1_0130,
     author = {Petr\'akov\'a, Martina},
     title = {A note on the existence of {Gibbs} marked point processes with applications in stochastic geometry},
     journal = {Kybernetika},
     pages = {130--159},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {2023},
     doi = {10.14736/kyb-2023-1-0130},
     mrnumber = {4567845},
     zbl = {07675646},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/}
}
TY  - JOUR
AU  - Petráková, Martina
TI  - A note on the existence of Gibbs marked point processes with applications in stochastic geometry
JO  - Kybernetika
PY  - 2023
SP  - 130
EP  - 159
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/
DO  - 10.14736/kyb-2023-1-0130
LA  - en
ID  - 10_14736_kyb_2023_1_0130
ER  - 
%0 Journal Article
%A Petráková, Martina
%T A note on the existence of Gibbs marked point processes with applications in stochastic geometry
%J Kybernetika
%D 2023
%P 130-159
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/
%R 10.14736/kyb-2023-1-0130
%G en
%F 10_14736_kyb_2023_1_0130
Petráková, Martina. A note on the existence of Gibbs marked point processes with applications in stochastic geometry. Kybernetika, Tome 59 (2023) no. 1, pp. 130-159. doi : 10.14736/kyb-2023-1-0130. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2023-1-0130/

Cité par Sources :