A principal topology obtained from uninorms
Kybernetika, Tome 58 (2022) no. 6, pp. 863-882 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms.
DOI : 10.14736/kyb-2022-6-0863
Classification : 03B52, 03E72, 06B30, 06F30, 08A72, 54A10
Keywords: uninorm; closure operator; principal topology; bounded lattice
@article{10_14736_kyb_2022_6_0863,
     author = {Kara\c{c}al, Funda and K\"oro\u{g}lu, Tuncay},
     title = {A principal topology obtained from uninorms},
     journal = {Kybernetika},
     pages = {863--882},
     year = {2022},
     volume = {58},
     number = {6},
     doi = {10.14736/kyb-2022-6-0863},
     mrnumber = {4548220},
     zbl = {07655863},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-6-0863/}
}
TY  - JOUR
AU  - Karaçal, Funda
AU  - Köroğlu, Tuncay
TI  - A principal topology obtained from uninorms
JO  - Kybernetika
PY  - 2022
SP  - 863
EP  - 882
VL  - 58
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-6-0863/
DO  - 10.14736/kyb-2022-6-0863
LA  - en
ID  - 10_14736_kyb_2022_6_0863
ER  - 
%0 Journal Article
%A Karaçal, Funda
%A Köroğlu, Tuncay
%T A principal topology obtained from uninorms
%J Kybernetika
%D 2022
%P 863-882
%V 58
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-6-0863/
%R 10.14736/kyb-2022-6-0863
%G en
%F 10_14736_kyb_2022_6_0863
Karaçal, Funda; Köroğlu, Tuncay. A principal topology obtained from uninorms. Kybernetika, Tome 58 (2022) no. 6, pp. 863-882. doi: 10.14736/kyb-2022-6-0863

[1] Alexandroff, P.: Diskrete Raume. Mat. Sb. 2 (1937), 501-518.

[2] Arenas, F. G.: Alexandroff spaces. Acta Math. Univ. Comenianae 68 (1999), 17-25. | MR

[3] Aşıcı, E., Karaçal, F.: On the T-partial order and properties. Inform. Sci. 267 (2014), 323-333. | DOI | MR

[4] Baczyński, M., Jayaram, B.: Fuzzy Implications. Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008. | MR | Zbl

[5] Birkhoff, G.: Lattice Theory. Third edition. Providence 1967. | MR

[6] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets. Kluwer Acad. Publ., Boston 2000. | MR

[7] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121. | DOI | MR | Zbl

[8] Echi, O.: The category of flows of Set and Top.. Topology Appl. { mi 159} (2012), 2357-2366. | DOI | MR

[9] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. | DOI

[10] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. | DOI | MR | Zbl

[11] Gang, L., Hua-Wen, L.: On properties of uninorms locally internal on the boundary. Fuzzy Sets Systems 332 (2018), 116-128. | DOI | MR

[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | MR | Zbl

[13] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices. Fuzzy Sets Systems 289 (2016),74-81. | DOI | MR

[14] İnce, M. A., Karaçal, F.: t-closure operators. Int. J. General Systems 48 (2019), 139-156. | DOI | MR

[15] Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N.: Generating methods for principal topologies on bounded latticies. Kybernetika 57 (2021), 714-736. | DOI | MR

[16] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets Systems 261 (2015), 33-43. | DOI | MR

[17] Kelley, J. L.: General Topology. Springer, New York 1975. | MR

[18] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets Systems 268 (2015), 59-71. | DOI | MR

[19] Khalimsky, E., Kopperman, R., Meyer, P. R.: Computer graphics and connected topologies on finite ordered sets. Topology Appl. 36 (1990), 1-17. | DOI | MR

[20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Boston - Dordrecht - London 2000. | MR | Zbl

[21] Kopperman, R.: The Khalimsky line in digital topology. In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.

[22] Kovalevsky, V. A.: Finite topology as applied to image analysis. CVGIP 46 (1989), 141-161. | DOI

[23] Kronheimer, E. H.: The topology of digital images. Topology Appl. 46 (1992), 279-303. | DOI | MR

[24] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaestiones Math. 40 (2017), 1, 17-28. | DOI | MR

[25] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97. | DOI | MR | Zbl

[26] Melin, E.: Digital surfaces and boundaries in Khalimsky spaces. J. Math. Imaging Vision 28 (2007), 169-177. | DOI | MR

[27] Parikh, R., Moss, L. S., Steinsvold, C.: Topology and epistemic logic. In: Handbook of Spatial Logics (2007), 299-341. | MR

[28] Richmond, B.: Principal topologies and transformation semigroups. Topology Appl. 155 (2008), 1644-1649. | DOI | MR

[29] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. | DOI | MR | Zbl

[30] Yager, R. R.: Uninorms in fuzzy system modelling. Fuzzy Sets Systems 122 (2001), 167-175. | DOI | MR

[31] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets Systems 67 (1994), 129-145. | DOI | MR

[32] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 22-31. | DOI | MR

[33] Wang, Z. D., Fang, J. X.: Residual coimplicators of left and right uninorms on a complete lattice. Fuzzy Sets Systems 160 (2009), 2086-2096. | DOI | MR | Zbl

Cité par Sources :