The universal tropicalization and the Berkovich analytification
Kybernetika, Tome 58 (2022) no. 5, pp. 790-815
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb{F}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^{\mathrm{an}}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathit{Trop}_{univ}(X)$ whose $\mathbb{T}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm{Spec}\: A$ is affine, we show that $\mathit{Trop}_{univ}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathit{Trop}_{univ}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm{Spec}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization.
DOI :
10.14736/kyb-2022-5-0790
Classification :
14G22, 14T05
Keywords: tropical geometry; tropical schemes; idempotent semirings; Berkovich analytification; semivaluation
Keywords: tropical geometry; tropical schemes; idempotent semirings; Berkovich analytification; semivaluation
@article{10_14736_kyb_2022_5_0790,
author = {Giansiracusa, Jeffrey and Giansiracusa, Noah},
title = {The universal tropicalization and the {Berkovich} analytification},
journal = {Kybernetika},
pages = {790--815},
publisher = {mathdoc},
volume = {58},
number = {5},
year = {2022},
doi = {10.14736/kyb-2022-5-0790},
mrnumber = {4538626},
zbl = {07655860},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/}
}
TY - JOUR AU - Giansiracusa, Jeffrey AU - Giansiracusa, Noah TI - The universal tropicalization and the Berkovich analytification JO - Kybernetika PY - 2022 SP - 790 EP - 815 VL - 58 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/ DO - 10.14736/kyb-2022-5-0790 LA - en ID - 10_14736_kyb_2022_5_0790 ER -
%0 Journal Article %A Giansiracusa, Jeffrey %A Giansiracusa, Noah %T The universal tropicalization and the Berkovich analytification %J Kybernetika %D 2022 %P 790-815 %V 58 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/ %R 10.14736/kyb-2022-5-0790 %G en %F 10_14736_kyb_2022_5_0790
Giansiracusa, Jeffrey; Giansiracusa, Noah. The universal tropicalization and the Berkovich analytification. Kybernetika, Tome 58 (2022) no. 5, pp. 790-815. doi: 10.14736/kyb-2022-5-0790
Cité par Sources :