The universal tropicalization and the Berkovich analytification
Kybernetika, Tome 58 (2022) no. 5, pp. 790-815.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Given an integral scheme $X$ over a non-archimedean valued field $k$, we construct a universal closed embedding of $X$ into a $k$-scheme equipped with a model over the field with one element $\mathbb{F}_1$ (a generalization of a toric variety). An embedding into such an ambient space determines a tropicalization of $X$ by previous work of the authors, and we show that the set-theoretic tropicalization of $X$ with respect to this universal embedding is the Berkovich analytification $X^{\mathrm{an}}$. Moreover, using the scheme-theoretic tropicalization we previously introduced, we obtain a tropical scheme $\mathit{Trop}_{univ}(X)$ whose $\mathbb{T}$-points give the analytification and that canonically maps to all other scheme-theoretic tropicalizations of $X$. This makes precise the idea that the Berkovich analytification is the universal tropicalization. When $X=\mathrm{Spec}\: A$ is affine, we show that $\mathit{Trop}_{univ}(X)$ is the limit of the tropicalizations of $X$ with respect to all embeddings in affine space, thus giving a scheme-theoretic enrichment of a well-known result of Payne. Finally, we show that $\mathit{Trop}_{univ}(X)$ represents the moduli functor of semivaluations on $X$, and when $X=\mathrm{Spec}\: A$ is affine there is a universal semivaluation on $A$ taking values in the idempotent semiring of regular functions on the universal tropicalization.
DOI : 10.14736/kyb-2022-5-0790
Classification : 14G22, 14T05
Keywords: tropical geometry; tropical schemes; idempotent semirings; Berkovich analytification; semivaluation
@article{10_14736_kyb_2022_5_0790,
     author = {Giansiracusa, Jeffrey and Giansiracusa, Noah},
     title = {The universal tropicalization and the {Berkovich} analytification},
     journal = {Kybernetika},
     pages = {790--815},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2022},
     doi = {10.14736/kyb-2022-5-0790},
     mrnumber = {4538626},
     zbl = {07655860},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/}
}
TY  - JOUR
AU  - Giansiracusa, Jeffrey
AU  - Giansiracusa, Noah
TI  - The universal tropicalization and the Berkovich analytification
JO  - Kybernetika
PY  - 2022
SP  - 790
EP  - 815
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/
DO  - 10.14736/kyb-2022-5-0790
LA  - en
ID  - 10_14736_kyb_2022_5_0790
ER  - 
%0 Journal Article
%A Giansiracusa, Jeffrey
%A Giansiracusa, Noah
%T The universal tropicalization and the Berkovich analytification
%J Kybernetika
%D 2022
%P 790-815
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/
%R 10.14736/kyb-2022-5-0790
%G en
%F 10_14736_kyb_2022_5_0790
Giansiracusa, Jeffrey; Giansiracusa, Noah. The universal tropicalization and the Berkovich analytification. Kybernetika, Tome 58 (2022) no. 5, pp. 790-815. doi : 10.14736/kyb-2022-5-0790. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0790/

Cité par Sources :