Keywords: fuzzy order relation; fuzzy cone
@article{10_14736_kyb_2022_5_0779,
author = {Kon, Masamichi},
title = {Characterization of fuzzy order relation by fuzzy cone},
journal = {Kybernetika},
pages = {779--789},
year = {2022},
volume = {58},
number = {5},
doi = {10.14736/kyb-2022-5-0779},
mrnumber = {4538625},
zbl = {07655859},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0779/}
}
Kon, Masamichi. Characterization of fuzzy order relation by fuzzy cone. Kybernetika, Tome 58 (2022) no. 5, pp. 779-789. doi: 10.14736/kyb-2022-5-0779
[1] Jahn, J., Ha, T. X. D.: New order relations in set optimization. J. Optim. Theory Appl. 148 (2011), 209-236. | DOI
[2] Khan, A. A., Tammer, C., Z\u{a}linescu, C.: Set-valued Optimization: An Introduction with Applications. Springer-Verlag, Berlin 2015.
[3] Kon, M.: Fuzzy Set Optimization (in Japanese). Hirosaki University Press, Japan 2019.
[4] Kon, M., Kuwano, H.: On sequences of fuzzy sets and fuzzy set-valued mappings. Fixed Point Theory Appl. 2013 (2013), 327. | DOI
[5] Kuroiwa, D., Tanaka, T., Ha, T. X. D.: On cone convexity of set-valued maps. Nonlinear Analysis, Theory, Methods Appl. 30 (1997), 1487-1496. | DOI
[6] Peressini, A. L.: Ordered Topological Vector Spaces. Harper and Row, New York 1967.
[7] Young, R. C.: The algebra of many-valued quantities. Math. Ann. 104 (1931), 260-290. | DOI
[8] Zadeh, L. A.: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | Zbl
[9] Zadeh, L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177-200. | DOI
[10] Zhang, H.-P., Pérez-Fernández, R., Beats, B. De: Fuzzy betweenness relations and their connection with fuzzy order relations. Fuzzy Sets Systems 384 (2020), 1-22. | DOI
Cité par Sources :