Keywords: pair; semiring; system; triple; shallow; algebraic; integral; affine; Ore; negation map; congruence; module
@article{10_14736_kyb_2022_5_0733,
author = {Jun, Jaiung and Mincheva, Kalina and Rowen, Louis},
title = {$\mathcal {T}$-semiring pairs},
journal = {Kybernetika},
pages = {733--759},
year = {2022},
volume = {58},
number = {5},
doi = {10.14736/kyb-2022-5-0733},
mrnumber = {4538623},
zbl = {07655857},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0733/}
}
TY - JOUR
AU - Jun, Jaiung
AU - Mincheva, Kalina
AU - Rowen, Louis
TI - $\mathcal {T}$-semiring pairs
JO - Kybernetika
PY - 2022
SP - 733
EP - 759
VL - 58
IS - 5
UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0733/
DO - 10.14736/kyb-2022-5-0733
LA - en
ID - 10_14736_kyb_2022_5_0733
ER -
Jun, Jaiung; Mincheva, Kalina; Rowen, Louis. $\mathcal {T}$-semiring pairs. Kybernetika, Tome 58 (2022) no. 5, pp. 733-759. doi: 10.14736/kyb-2022-5-0733
[1] Akian, M., Gaubert, S., Guterman, A.: Linear independence over tropical semirings and beyond. In: Tropical and Idempotent Mathematics (G. L. Litvinov and S. N. Sergeev, eds.), Contemp. Math. 495 (2009), 1-38. | DOI
[2] Akian, M., Gaubert, S., Rowen, L.: Linear algebra over systems. Preprint, 2022.
[3] Akian, M., Gaubert, S., Rowen, L.: From systems to hyperfields and related examples. Preprint, 2022.
[4] Alarcon, F., Anderson, D.: Commutative semirings and their lattices of ideals. J. Math. 20 (1994), 4.
[5] Baker, M., Bowler, N.: Matroids over partial hyperstructures. Adv. Math. 343 (2019), 821-863. | DOI
[6] Bell, J., Zelmanov, E.: On the growth of algebras, semigroups, and hereditary languages. Inventiones Math. 224 (2021), 683-697. | DOI
[7] Connes, A., Consani, C.: From monoids to hyperstructures: in search of an absolute arithmetic. Casimir Force, Casimir Operators and the Riemann Hypothesis, de Gruyter 2010, pp. 147-198. | DOI
[8] Chapman, A., Gatto, L., Rowen, L.: Clifford semialgebras. Rendiconti del Circolo Matematico di Palermo Series 2, 2022 | DOI
[9] Costa, A. A.: Sur la theorie generale des demi-anneaux. Publ. Math. Decebren 10 (1963), 14-29. | DOI
[10] Dress, A.: Duality theory for finite and infinite matroids with coefficients. Advances Math. 93 (1986), 2, 214-250.
[11] Dress, A., Wenzel, W.: Algebraic, tropical, and fuzzy geometry. Beitrage zur Algebra und Geometrie/ Contributions to Algebra und Geometry 52 (2011), 2, 431-461. | DOI
[12] Elizarov, N., Grigoriev, D.: A tropical version of Hilbert polynomial (in dimension one), (2021). DOI
[13] Gatto, L., Rowen, L.: Grassman semialgebras and the Cayley-Hamilton theorem. Proc. American Mathematical Society, series B, 7 (2020), 183-201. DOI
[14] Gaubert, S.: Theorie des systemes lineaires dans les diodes. These, Ecole des Mines de Paris 1992.
[15] Gaubert, S.: Methods and applications of (max,+) linear algebra. STACS' 97, number 1200 in LNCS, Lübeck, Springer 1997.
[16] Giansiracusa, J., Jun, J., Lorscheid, O.: On the relation between hyperrings and fuzzy rings. Beitr. Algebra Geom. 58 (2017), 735-764. | DOI
[17] Golan, J.: The theory of semirings with applications in mathematics and theoretical computer science. Longman Sci Tech. 54 (1992).
[18] Greenfeld, B.: Growth of monomial algebras, simple rings and free subalgebras. J. Algebra 489 (2017), 427-434. | DOI
[19] Hilgert, J., Hofmann, K.: Semigroups in Lie groups, semialgebras in Lie algebras. Trans. Amer. Math. Soc. 288 (1985), 2. | DOI
[20] Izhakian, Z.: Tropical arithmetic and matrix algebra. Commun. Algebra 37 (2009), 4, 1445-1468. | DOI
[21] Izhakian, Z., Rowen, L.: Supertropical algebra. Adv. Math. 225 (2010), 4, 2222-2286. | DOI
[22] Izhakian, Z., Rowen, L.: Supertropical matrix algebra. Israel J. Math. 182 (2011), 1, 383-424. | DOI
[23] Jacobson, N.: Basic Algebra II. Freeman 1980.
[24] Joo, D., Mincheva, K.: Prime congruences of additively idempotent semirings and a Nullstellensatz for tropical polynomials. Selecta Mathematica 24 (2018), 3, 2207-2233. | DOI
[25] Jun, J., Mincheva, K., Rowen, L.: Projective systemic modules. J. Pure Appl. Algebra 224 (2020), 5, 106-243.
[26] Jun, J.: Algebraic geometry over hyperrings. Adv. Math. 323 (2018), 142-192. | DOI
[27] Jun, J., Rowen, L.: Categories with negation. In: Categorical, Homological and Combinatorial Methods in Algebra (AMS Special Session in honor of S. K. Jain's 80th birthday), Contempor. Math. 751 (2020), 221-270.
[28] Katsov, Y.: Tensor products of functors. Siberian J. Math. 19 (1978), 222-229, trans. from Sib. Mat. Zhurnal 19 (1978), 2, 318-327. | DOI
[29] Krasner, M.: A class of hyperrings and hyperfields. Int. J. Math. Math. Sci. 6 (1983), 2, 307-312. | DOI
[30] Krause, G. R., Lenagan, T. H.: Growth of algebras and Gelfand-Kirillov dimension. Amer. Math. Soc. Graduate Stud. Math. 22 (2000).
[31] Ljapin, E. S.: Semigroups. AMS Translations of Mathematical Monographs 3 (1963), 519 pp.
[32] Lorscheid, O.: The geometry of blueprints. Part I. Adv. Math. 229 (2012), 3, 1804-1846. | DOI
[33] Lorscheid, O.: A blueprinted view on $\mathbb{F}_1$-geometry. In: Absolute Arithmetic and $\mathbb{F}_1$-geometry (Koen Thas. ed.), European Mathematical Society Publishing House 2016.
[34] Rowen, L. H.: Ring Theory. Vol. I. Academic Press, Pure and Applied Mathematics 127, 1988.
[35] Rowen, L. H.: Graduate algebra: Noncommutative View. AMS Graduate Studies in Mathematics 91, 2008.
[36] Rowen, L. H.: Algebras with a negation map. Europ. J. Math. 8 (2022), 62-138. | DOI
[37] Rowen, L. H.: An informal overview of triples and systems, 2017. DOI
[38] Smoktunowicz, A.: Growth, entropy and commutativity of algebras satisfying prescribed relations. Selecta Mathematica 20 (2014) 4, 1197-1212. | DOI
[39] Shneerson, L. M.: Types of growth and identities of semigroups. Int. J. Algebra Comput., Special Issue: International Conference on Group Theory "Combinatorial, Geometric and Dynamical Aspects of Infinite Groups"; (L. Bartholdi, T. Ceccherini-Silberstein, T. Smirnova-Nagnibeda, A. Zuk, eds.), 15 (2005), 05, 1189-1204. | DOI
[40] Viro, O. Y.: Hyperfields for tropical geometry I, Hyperfields and dequantization, 2010. DOI
Cité par Sources :