Non-surjective linear transformations of tropical matrices preserving the cyclicity index
Kybernetika, Tome 58 (2022) no. 5, pp. 691-707
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The cyclicity index of a matrix is the cyclicity index of its critical subgraph, namely, the subgraph of the adjacency graph which consists of all cycles of the maximal average weight. The cyclicity index of a graph is the least common multiple of the cyclicity indices of all its maximal strongly connected subgraphs, and the cyclicity index of a strongly connected graph is the least common divisor of the lengths of its (directed) cycles. In this paper we obtain the characterization of linear, possibly non-surjective, transformations of tropical matrices preserving the cyclicity index. It appears that non-bijective maps with these properties exist and all maps are exhausted by transposition, renumbering of vertices, Hadamard multiplication with a matrix of a certain special structure, and certain diagonal transformation. Moreover, only diagonal transformation can be non-bijective.
DOI :
10.14736/kyb-2022-5-0691
Classification :
05C22, 05C38, 05C50
Keywords: tropical linear algebra; cyclicity index; linear transformations
Keywords: tropical linear algebra; cyclicity index; linear transformations
@article{10_14736_kyb_2022_5_0691,
author = {Guterman, Alexander and Kreines, Elena and Vlasov, Alexander},
title = {Non-surjective linear transformations of tropical matrices preserving the cyclicity index},
journal = {Kybernetika},
pages = {691--707},
publisher = {mathdoc},
volume = {58},
number = {5},
year = {2022},
doi = {10.14736/kyb-2022-5-0691},
mrnumber = {4538621},
zbl = {07655855},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/}
}
TY - JOUR AU - Guterman, Alexander AU - Kreines, Elena AU - Vlasov, Alexander TI - Non-surjective linear transformations of tropical matrices preserving the cyclicity index JO - Kybernetika PY - 2022 SP - 691 EP - 707 VL - 58 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/ DO - 10.14736/kyb-2022-5-0691 LA - en ID - 10_14736_kyb_2022_5_0691 ER -
%0 Journal Article %A Guterman, Alexander %A Kreines, Elena %A Vlasov, Alexander %T Non-surjective linear transformations of tropical matrices preserving the cyclicity index %J Kybernetika %D 2022 %P 691-707 %V 58 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/ %R 10.14736/kyb-2022-5-0691 %G en %F 10_14736_kyb_2022_5_0691
Guterman, Alexander; Kreines, Elena; Vlasov, Alexander. Non-surjective linear transformations of tropical matrices preserving the cyclicity index. Kybernetika, Tome 58 (2022) no. 5, pp. 691-707. doi: 10.14736/kyb-2022-5-0691
Cité par Sources :