Non-surjective linear transformations of tropical matrices preserving the cyclicity index
Kybernetika, Tome 58 (2022) no. 5, pp. 691-707.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The cyclicity index of a matrix is the cyclicity index of its critical subgraph, namely, the subgraph of the adjacency graph which consists of all cycles of the maximal average weight. The cyclicity index of a graph is the least common multiple of the cyclicity indices of all its maximal strongly connected subgraphs, and the cyclicity index of a strongly connected graph is the least common divisor of the lengths of its (directed) cycles. In this paper we obtain the characterization of linear, possibly non-surjective, transformations of tropical matrices preserving the cyclicity index. It appears that non-bijective maps with these properties exist and all maps are exhausted by transposition, renumbering of vertices, Hadamard multiplication with a matrix of a certain special structure, and certain diagonal transformation. Moreover, only diagonal transformation can be non-bijective.
DOI : 10.14736/kyb-2022-5-0691
Classification : 05C22, 05C38, 05C50
Keywords: tropical linear algebra; cyclicity index; linear transformations
@article{10_14736_kyb_2022_5_0691,
     author = {Guterman, Alexander and Kreines, Elena and Vlasov, Alexander},
     title = {Non-surjective linear transformations of tropical matrices preserving the cyclicity index},
     journal = {Kybernetika},
     pages = {691--707},
     publisher = {mathdoc},
     volume = {58},
     number = {5},
     year = {2022},
     doi = {10.14736/kyb-2022-5-0691},
     mrnumber = {4538621},
     zbl = {07655855},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/}
}
TY  - JOUR
AU  - Guterman, Alexander
AU  - Kreines, Elena
AU  - Vlasov, Alexander
TI  - Non-surjective linear transformations of tropical matrices preserving the cyclicity index
JO  - Kybernetika
PY  - 2022
SP  - 691
EP  - 707
VL  - 58
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/
DO  - 10.14736/kyb-2022-5-0691
LA  - en
ID  - 10_14736_kyb_2022_5_0691
ER  - 
%0 Journal Article
%A Guterman, Alexander
%A Kreines, Elena
%A Vlasov, Alexander
%T Non-surjective linear transformations of tropical matrices preserving the cyclicity index
%J Kybernetika
%D 2022
%P 691-707
%V 58
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/
%R 10.14736/kyb-2022-5-0691
%G en
%F 10_14736_kyb_2022_5_0691
Guterman, Alexander; Kreines, Elena; Vlasov, Alexander. Non-surjective linear transformations of tropical matrices preserving the cyclicity index. Kybernetika, Tome 58 (2022) no. 5, pp. 691-707. doi : 10.14736/kyb-2022-5-0691. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-5-0691/

Cité par Sources :