Keywords: linear controlled system; time delay system; three time-scale singularly perturbed system; exponential stability; memory-free state-feedback stabilization
@article{10_14736_kyb_2022_4_0593,
author = {Glizer, Valery Y.},
title = {Stability and stabilization of one class of three time-scale systems with delays},
journal = {Kybernetika},
pages = {593--625},
year = {2022},
volume = {58},
number = {4},
doi = {10.14736/kyb-2022-4-0593},
mrnumber = {4521858},
zbl = {07655849},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-4-0593/}
}
TY - JOUR AU - Glizer, Valery Y. TI - Stability and stabilization of one class of three time-scale systems with delays JO - Kybernetika PY - 2022 SP - 593 EP - 625 VL - 58 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-4-0593/ DO - 10.14736/kyb-2022-4-0593 LA - en ID - 10_14736_kyb_2022_4_0593 ER -
Glizer, Valery Y. Stability and stabilization of one class of three time-scale systems with delays. Kybernetika, Tome 58 (2022) no. 4, pp. 593-625. doi: 10.14736/kyb-2022-4-0593
[1] Abed, E. H.: Strong D-stability. Systems Control Lett. 7 (1986), 207-212. | DOI | MR
[2] Chen, W.-H., Yang, S. T., Lu, X., Shen, Y.: Exponential stability and exponential stabilization of singularly perturbed stochastic systems with time-varying delay. Int. J. Robust Nonlinear Control 20 (2010), 2021-2044. | DOI | MR
[3] Chiou, J.-S., Wang, C.-J.: An infinite $\varepsilon$-bound stability criterion for a class of multiparameter singularly perturbed time-delay systems. Int. J. Systems Sci. 36 (2005), 485-490. | DOI | MR
[4] Corless, M., Glielmo, L.: On the exponential stability of singularly perturbed systems. SIAM J. Control Optim. 30 (1992), 1338-1360. | DOI | MR
[5] Desoer, C. A., Shahruz, S. M.: Stability of nonlinear systems with three time scales. Circuits Systems Signal Process. 5 (1986), 449-464. | DOI | MR
[6] Dmitriev, M. G., Kurina, G. A.: Singular perturbations in control problems. Autom. Remote Control 67 (2006), 1-43. | DOI | MR
[7] Dr\u{a}gan, V.: Near optimal linear quadratic regulator for controlled systems described by Ito differential equations with two fast time scales. Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), 89-109. | MR
[8] Dr\u{a}gan, V.: On the linear quadratic optimal control for systems described by singularly perturbed Ito differential equations with two fast time scales. Axioms 8 (2019), paper No. 30. | DOI | MR
[9] Dr\u{a}gan, V., Ionita, A.: Exponential stability for singularly perturbed systems with state delays. In: Proc. 6th Colloquium on the Qualitative Theory of Differential Equations, Szeged (1999), pp. 1-8. | DOI | MR
[10] Dragan, V., Mukaidani, H.: Stabilizing composite control for systems modeled by singularly perturbed Ito differential equations with two small time constants. In: Proc. 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, New York 2011, pp. 740-745. | DOI
[11] Erneux, T.: Applied Delay Differential Equations. Springer, New York 2009. | MR
[12] Fridman, E.: Introduction to Time-Delay Systems. Birkhäuser, New York 2014. | MR
[13] Fridman, E., Shaked, U.: An improved stabilization method for linear time-delay systems. IEEE Trans. Automat. Control 47 (2002), 1931-1937. | DOI | MR
[14] Gajic, Z., Lim, M. T.: Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques. Marsel Dekker, New York 2001. | MR
[15] Gantmacher, F. R.: The Theory of Matrices. Vol. 2. Chelsea, New York 1974. | MR
[16] Glizer, V. Y.: On stabilization of nonstandard singularly perturbed systems with small delays in state and control. IEEE Trans. Automat. Control 49 (2004), 1012-1016. | DOI | MR
[17] Glizer, V. Y.: Uniform stabilizability of parameter-dependent systems with state and control delays by smooth-gain controls. J. Optim. Theory Appl. 183 (2019), 50-65. | DOI | MR
[18] Glizer, V. Y.: Controllability of Singularly Perturbed Linear Time Delay Systems. Birkhäuser 2021. | DOI | MR
[19] Glizer, V. Y., Fridman, E.: Stability of singularly perturbed functional-differential systems: spectrum analysis and LMI approaches. IMA J. Math. Control Inform. 29 (2012), 79-111. | DOI | MR
[20] Glizer, V. Y., Fridman, E., Feigin, Y.: A novel approach to exact slow-fast decomposition of linear singularly perturbed systems with small delays. SIAM J. Control Optim. 55 (2017), 236-274. | DOI | MR
[21] Gu, K., Niculescu, S.-I.: Survey on recent results in the stability and control of time-delay systems. J. Dyn. Syst. Meas. Control 125 (2003), 158-165. | DOI
[22] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations. Springer, New York 1993. | DOI | MR
[23] Hoppensteadt, F.: On systems of ordinary differential equations with several parameters multiplying the derivatives. J. Differential Equations 5 (1969), 106-116. | DOI | MR
[24] Ioannou, P., Kokotovic, P.: Decentralized adaptive control of interconnected systems with reduced-order models. Automatica J. IFAC 21 (1985), 401-412. | DOI | MR
[25] Ionita, A., Dr\u{a}gan, V.: Stabilization of singularly perturbed linear systems with delay and saturating control. In: Proc. 7th Mediterranean Conference on Control and Automation, Mediterranean Control Association, Cyprus 1999, 1855-1869.
[26] Kathirkamanayagan, M., Ladde, G. S.: Diagonalization and stability of large-scale singularly perturbed linear system. J. Math. Anal. Appl. 135 (1988), 38-60. | DOI | MR
[27] Khalil, H. K.: Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Automatica J. IFAC 17 (1981), 797-804. | DOI | MR
[28] Khalil, H. K.: Feedback control of nonstandard singularly perturbed systems. IEEE Trans. Automat. Contr. 34 (1989), 1052-1060. | DOI | MR
[29] Khalil, H. K., Kokotovic, P. V.: D-stability and multiparameter singular perturbation. SIAM J. Control Optim. 17 (1979) 56-65. | DOI | MR
[30] Khalil, H. K., Kokotovic, P. V.: Control of linear systems with multiparameter singular perturbations. Automatica J. IFAC 15 (1979), 197-207. | DOI | MR
[31] Kokotovic, P. V., Khalil, H. K., O'Reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. SIAM, Philadelphia 1999. | MR
[32] Kuehn, C.: Multiple Time Scale Dynamics. Springer, New York 2015. | DOI | MR
[33] Kurina, G. A.: Complete controllability of various-speed singularly perturbed systems. Math. Notes 52 (1992), 1029-1033. | DOI | MR
[34] Ladde, G. S., Šiljak, D. D.: Multiparameter singular perturbations of linear systems with multiple time scales. Automatica J. IFAC 19 (1983), 385-394. | DOI | MR
[35] Mahmoud, M. S.: Recent progress in stability and stabilization of systems with time-delays. Math. Probl. Engrg. 2017 (2017), article ID 7354654. | DOI | MR
[36] Naidu, D. S.: Singular perturbations and time scales in control theory and applications: an overview. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), 233-278. | MR
[37] Nam, P. T., Phat, V. N.: Robust stabilization of linear systems with delayed state and control. J. Optim. Theory Appl. 140 (2009), 287-299. | DOI | MR
[38] Pawluszewicz, E., Tsekhan, O.: Stability and stabilisability of the singularly perturbed system with delay on time scales: a decomposition approach. Int. J. Control, Published online: 28 Apr 2021, | DOI | MR
[39] Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica J. IFAC 39 (2003), 1667-1694. | DOI | MR
[40] Sagara, M., Mukaidani, H., Dragan, V.: Near-optimal control for multiparameter singularly perturbed stochastic systems. Optim. Control Appl. Methods 32 (2011), 113-125. | DOI | MR
[41] Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Gu, K.: Stability and stabilization of systems with time delay. IEEE Control Systems Magazine 31 (2011), 38-65. | DOI | MR
[42] Sun, F., Yang, C., Zhang, Q., Shen, Y.: Stability bound analysis of singularly perturbed systems with time-delay. Chemical Industry and Chemical Engineering Quarterly 19 (2013), 505-511. | DOI
[43] Vasil'eva, A. B., Butuzov, V. F., Kalachev, L. V.: The Boundary Function Method for Singular Perturbation Problems. SIAM, Philadelphia 1995. | MR
Cité par Sources :