Migrativity properties of 2-uninorms over semi-t-operators
Kybernetika, Tome 58 (2022) no. 3, pp. 354-375.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we analyze and characterize all solutions about $\alpha$-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha$-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha$-migrativity of $G$ over a semi-t-operator $F_{\mu,\nu}$ is closely related to the $\alpha$-section of $F_{\mu,\nu}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu,\nu}$. But for the other four categories, the $\alpha$-migrativity over a semi-t-operator $F_{\mu,\nu}$ is fully determined by the $\alpha$-section of $F_{\mu,\nu}$.
DOI : 10.14736/kyb-2022-3-0354
Classification : 03B52, 94D05
Keywords: 2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms
@article{10_14736_kyb_2022_3_0354,
     author = {Li-Jun, Ying and Feng, Qin},
     title = {Migrativity properties of 2-uninorms over semi-t-operators},
     journal = {Kybernetika},
     pages = {354--375},
     publisher = {mathdoc},
     volume = {58},
     number = {3},
     year = {2022},
     doi = {10.14736/kyb-2022-3-0354},
     mrnumber = {4494096},
     zbl = {07613050},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/}
}
TY  - JOUR
AU  - Li-Jun, Ying
AU  - Feng, Qin
TI  - Migrativity properties of 2-uninorms over semi-t-operators
JO  - Kybernetika
PY  - 2022
SP  - 354
EP  - 375
VL  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/
DO  - 10.14736/kyb-2022-3-0354
LA  - en
ID  - 10_14736_kyb_2022_3_0354
ER  - 
%0 Journal Article
%A Li-Jun, Ying
%A Feng, Qin
%T Migrativity properties of 2-uninorms over semi-t-operators
%J Kybernetika
%D 2022
%P 354-375
%V 58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/
%R 10.14736/kyb-2022-3-0354
%G en
%F 10_14736_kyb_2022_3_0354
Li-Jun, Ying; Feng, Qin. Migrativity properties of 2-uninorms over semi-t-operators. Kybernetika, Tome 58 (2022) no. 3, pp. 354-375. doi : 10.14736/kyb-2022-3-0354. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/

Cité par Sources :