Migrativity properties of 2-uninorms over semi-t-operators
Kybernetika, Tome 58 (2022) no. 3, pp. 354-375
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
In this paper, we analyze and characterize all solutions about $\alpha$-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha$-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha$-migrativity of $G$ over a semi-t-operator $F_{\mu,\nu}$ is closely related to the $\alpha$-section of $F_{\mu,\nu}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu,\nu}$. But for the other four categories, the $\alpha$-migrativity over a semi-t-operator $F_{\mu,\nu}$ is fully determined by the $\alpha$-section of $F_{\mu,\nu}$.
In this paper, we analyze and characterize all solutions about $\alpha$-migrativity properties of the five subclasses of 2-uninorms, i. e. $C^{k}$, $C^{0}_{k}$, $C^{1}_{k}$, $C^{0}_{1}$, $C^{1}_{0}$, over semi-t-operators. We give the sufficient and necessary conditions that make these $\alpha$-migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for $G\in C^{k}$, the $\alpha$-migrativity of $G$ over a semi-t-operator $F_{\mu,\nu}$ is closely related to the $\alpha$-section of $F_{\mu,\nu}$ or the ordinal sum representation of t-norm and t-conorm corresponding to $F_{\mu,\nu}$. But for the other four categories, the $\alpha$-migrativity over a semi-t-operator $F_{\mu,\nu}$ is fully determined by the $\alpha$-section of $F_{\mu,\nu}$.
DOI :
10.14736/kyb-2022-3-0354
Classification :
03B52, 94D05
Keywords: 2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms
Keywords: 2-uninorms; uninorms; semi-t-operators; triangular norms; triangular conorms
@article{10_14736_kyb_2022_3_0354,
author = {Li-Jun, Ying and Feng, Qin},
title = {Migrativity properties of 2-uninorms over semi-t-operators},
journal = {Kybernetika},
pages = {354--375},
year = {2022},
volume = {58},
number = {3},
doi = {10.14736/kyb-2022-3-0354},
mrnumber = {4494096},
zbl = {07613050},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/}
}
TY - JOUR AU - Li-Jun, Ying AU - Feng, Qin TI - Migrativity properties of 2-uninorms over semi-t-operators JO - Kybernetika PY - 2022 SP - 354 EP - 375 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0354/ DO - 10.14736/kyb-2022-3-0354 LA - en ID - 10_14736_kyb_2022_3_0354 ER -
Li-Jun, Ying; Feng, Qin. Migrativity properties of 2-uninorms over semi-t-operators. Kybernetika, Tome 58 (2022) no. 3, pp. 354-375. doi: 10.14736/kyb-2022-3-0354
Cité par Sources :