Keywords: fixed point; fuzzy metric spaces; controlled fuzzy metric spaces; fuzzy $\Theta _f$-contractive mapping; dynamic market equilibrium
@article{10_14736_kyb_2022_3_0335,
author = {Tiwari, Rakesh and Rako\v{c}evi\'c, Vladimir and Rajput, Shraddha},
title = {Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium},
journal = {Kybernetika},
pages = {335--353},
year = {2022},
volume = {58},
number = {3},
doi = {10.14736/kyb-2022-3-0335},
mrnumber = {4494095},
zbl = {07613049},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0335/}
}
TY - JOUR AU - Tiwari, Rakesh AU - Rakočević, Vladimir AU - Rajput, Shraddha TI - Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium JO - Kybernetika PY - 2022 SP - 335 EP - 353 VL - 58 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0335/ DO - 10.14736/kyb-2022-3-0335 LA - en ID - 10_14736_kyb_2022_3_0335 ER -
%0 Journal Article %A Tiwari, Rakesh %A Rakočević, Vladimir %A Rajput, Shraddha %T Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium %J Kybernetika %D 2022 %P 335-353 %V 58 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-3-0335/ %R 10.14736/kyb-2022-3-0335 %G en %F 10_14736_kyb_2022_3_0335
Tiwari, Rakesh; Rakočević, Vladimir; Rajput, Shraddha. Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium. Kybernetika, Tome 58 (2022) no. 3, pp. 335-353. doi: 10.14736/kyb-2022-3-0335
[1] Aydi, H., Bota, M., Karapinar, E., S.Moradi: A common fixed point for weak $\phi$-contractions on $b$-metric spaces. Fixed Point Theory 13 (2012), 337-346. | MR
[2] Afshari, H., Atapour, M., Aydi, H.: Generalized $\alpha-\psi-$Geraghty multivalued mappings on $b$-metric spaces endowed with a graph. J. Appl. Eng. Math. 7 (2017), 248-260. | MR
[3] Aydi, H., R.Banković, I.Mitrović, Nazam, M.: Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. (2018), 4745764. | DOI | MR
[4] Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S.: $\alpha$-Contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 9 (2018), 47-60. | MR
[5] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrals. Fund. Math. 3 (1922), 133-181. | DOI | MR
[6] Bakhtin, I. A.: The contraction mapping principle in almost metric spaces. Funct. Anal. 30 (1989), 26-37. | DOI | MR
[7] Boriceanu, M., Petrusel., A., Rus, I. A.: Fixed point theorems for some multivalued generalized contraction in b-metric spaces. Int. J. Math. Statist. 6 (2010), 65-76. | MR
[8] Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrava 1 (1993), 5-11. DOI | MR
[9] Dowling, T. E.: Introduction to Mathematical Economics. Schaum's Outline Series, 2001.
[10] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 395-399. | DOI | MR | Zbl
[11] Gopal, D.: Contributions to fixed point theory of fuzzy contractive mappings. Adv. Metric Fixed Point Theory Appl. (2021), 241-282. | DOI | MR
[12] Gopal, D., T.Došenović: Fixed point theory for fuzzy contractive mappings. Metric Struct. Fixed Point Theory (2021), 199-244. | DOI | MR
[13] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces. Iranian J. Fuzzy Systems 11(2014), 3, 95-107. | DOI | MR
[14] Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Systems 27 (1988), 385-389. | DOI | MR | Zbl
[15] Hao, Y., Guan, H.: On some common fixed point results for weakly contraction mappings with application. J. Funct. Spaces 2021 (2021), 5573983. | DOI | MR
[16] Kim, J. K.: Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces. J. Comput. Anal. Appl. 22 (2017), 336-345. | MR
[17] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 326-334. DOI | MR
[18] Mehmood, F., Ali, R., Ionescu, C., Kamran, T.: Extended fuzzy b-metric spaces. J. Math. Anal. 8 (2017), 124-131. DOI | MR
[19] Melliani, S., Moussaoui, A.: Fixed point theorem using a new class of fuzzy contractive mappings. J. Univer. Math. 1 (2018), 2, 148-154.
[20] Mihet, D.: Fuzzy $\psi$-contractive mappings in non-archimedean fuzzy metric spaces. Fuzzy Sets Systems 159 (2008), 6, 739-744. | DOI | MR
[21] Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T.: Controlled metric type spaces and the related contraction principle. Math. Molecul. Divers. Preservat. Int. 6 (2018), 1-7. | DOI
[22] Nadaban, S.: Fuzzy b-metric spaces. Int. J. Comput. Commun. Control 11 (2016), 273-281. | DOI
[23] Nasr, H. S., Imdad, M., Khan, I., Hasanuzzaman, M.: Fuzzy $\Theta_f$-contractive mappings and their fixed points with applications. J. Intell. Fuzzy Systems (2020), 1-10. | DOI
[24] Sezen, M. S.: Controlled fuzzy metric spaces and some related fixed point results. Numer. Part. Different. Equations (2020), 1-11. | DOI | MR
[25] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems. Fuzzy Sets Systems 350 (2018), 85-94. | DOI | MR
[26] Schweizer, B., Sklar, A.: Statistical metric spaces. Paciffc J. Math. 10 (1960), 313-334. | DOI | MR | Zbl
[27] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces. Fuzzy Sets Systems 222 (2013), 108-114. | DOI | MR
[28] Zadeh, A. L.: Fuzzy sets. Inform. Control 8 (1965), 338-353. | DOI | MR | Zbl
Cité par Sources :