Keywords: control; underwater ROV; modeling; kinematics
@article{10_14736_kyb_2022_2_0237,
author = {Sangalang, Ralph Gerard B. and Masangcay, Diether Jhay S. and Torino, Cleo Martin R. and Gutierrez, Diane Jelyn C.},
title = {Design of a control architecture for an underwater remotely operated vehicle {(ROV)} used for search and rescue operations},
journal = {Kybernetika},
pages = {237--253},
year = {2022},
volume = {58},
number = {2},
doi = {10.14736/kyb-2022-2-0237},
zbl = {07584155},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0237/}
}
TY - JOUR AU - Sangalang, Ralph Gerard B. AU - Masangcay, Diether Jhay S. AU - Torino, Cleo Martin R. AU - Gutierrez, Diane Jelyn C. TI - Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations JO - Kybernetika PY - 2022 SP - 237 EP - 253 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0237/ DO - 10.14736/kyb-2022-2-0237 LA - en ID - 10_14736_kyb_2022_2_0237 ER -
%0 Journal Article %A Sangalang, Ralph Gerard B. %A Masangcay, Diether Jhay S. %A Torino, Cleo Martin R. %A Gutierrez, Diane Jelyn C. %T Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations %J Kybernetika %D 2022 %P 237-253 %V 58 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0237/ %R 10.14736/kyb-2022-2-0237 %G en %F 10_14736_kyb_2022_2_0237
Sangalang, Ralph Gerard B.; Masangcay, Diether Jhay S.; Torino, Cleo Martin R.; Gutierrez, Diane Jelyn C. Design of a control architecture for an underwater remotely operated vehicle (ROV) used for search and rescue operations. Kybernetika, Tome 58 (2022) no. 2, pp. 237-253. doi: 10.14736/kyb-2022-2-0237
[1] Arnesen, B. O., Lekkas, A. M., Schjølberg, I.: 3D path following and tracking for an inspection class ROV. In: Proc. ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, American Society of Mechanical Engineers 2017, pp. 1-10. | DOI
[2] Azis, F. A., Aras, M. S. M., Rashid, M. Z. A., Othman, M. N., Abdullah, S. S.: Problem identification for underwater remotely operated vehicle (ROV): A case study. Procedia Engrg. 41 (2012), 554-560. | DOI
[3] Bayusari, I., Alfarino, A. M., Hikmarika, H., Husin, Z., Dwijayanti, S., Suprapto, B. Y.: Position control system of autonomous underwater vehicle using PID controller. In: Proc. 2021 Eighth International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). IEEE 2021. | DOI
[4] Chiella, A. C. B., Santos, C. H. F. dos, Motta, L. R. H., Rauber, J. G., Diedrich, D. C.: Control strategies applied to autonomous underwater vehicle for inspection of dams. In: Proc. 2012 Seventeenth International Conference on Methods and Models in Automation and Robotics (MMAR), IEEE 2012, pp. 320-324. | DOI
[5] Chin, C. S.: Systematic modeling and model-based simulation of a remotely operated vehicle using MATLAB and Simulink. Int. J. Model. Simul. Sci. Comput. 2 (2011), 4, 481-511. | DOI
[6] Chin, Ch., Lau, M.: Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control. J. Marine Sci. Appl. 11 (2012), 2, 150-163. | DOI
[7] Cohan, S.: Trends in ROV development. Marine Technol. Soc. J. 42 (2002), 38-43. | DOI
[8] Fossen, T. I., Fjellstad, O. E.: Nonlinear modelling of marine vehicles in 6 degrees of freedom. Math. Modell. Systems 1 (1995), 17-27. | DOI | MR
[9] García-Valdovinos, L. G., Salgado-Jiménez, T., Bandala-Sánchez, M., Nava-Balanzar, L., Hernández-Alvarado, R., Cruz-Ledesma, J. A.: Modelling, design and robust control of a remotely operated underwater vehicle. Int. J. Advanced Robotic Systems 11 (2014), 1. | DOI
[10] Hydromechanics Subcommittee: Technical and Research Committee of The Society of Naval Architects and Marine Engineers: Nomenclature for treating motion of a submerged body through a uid. In: Proc. American Towing Tank Conference, 1950.
[11] Jagtap, P., Raut, P., Kumar, P., Gupta, A., Singh, N. M., Kazi, F.: Control of autonomous underwater vehicle using reduced order model predictive control in three dimensional space. IFAC - PapersOnLine 49 (2016), 1, 772-777. | DOI
[12] Khodayari, M. H., Balochian, S.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller. J. Marine Sci. Technol. 20 (2015), 3, 559-578. | DOI
[13] Le, K. D., Nguyen, H. D., Ranmuthugala, D.: Development and control of a low-cost, three-thruster, remotely operated underwater vehicle. Int. J. Automat. Technol. 9 (2015), 1, 67-75. | DOI
[14] Marzbanrad, A., Sharafi, J., Eghtesad, M., Kamali, R.: Design, construction and control of a remotely operated vehicle (ROV). In: Proc. ASME 2011 International Mechanical Engineering Congress and Exposition, volume 7, ASMEDC 2011. | DOI
[15] Rasa, S., Vasquez, R.: Development of a low-level control system for the ROV visor3. Int. J. Navigat. Observ. (2016), 1-12. | DOI
[16] Song, F., An, P. E., Folleco, A.: Modeling and simulation of autonomous underwater vehicles: Design and implementation. IEEE J. Oceanic Engrg. 28 (2003), 283-296. | DOI
[17] Vahid, S., Javanmard, K.: Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via PPD controller with state feedback. Int. J. Coastal Offshore Engrg. 4 (2016).
Cité par Sources :