@article{10_14736_kyb_2022_2_0218,
author = {Wang, Zhaoxu and Zhai, Chao and Zhang, Hehong and Xiao, Gaoxi and Chen, Guanghou and Xu, Yulin},
title = {Coordination control and analysis of {TCSC} devices to protect electrical power systems against disruptive disturbances},
journal = {Kybernetika},
pages = {218--236},
year = {2022},
volume = {58},
number = {2},
doi = {10.14736/kyb-2022-2-0218},
zbl = {07584154},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0218/}
}
TY - JOUR AU - Wang, Zhaoxu AU - Zhai, Chao AU - Zhang, Hehong AU - Xiao, Gaoxi AU - Chen, Guanghou AU - Xu, Yulin TI - Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances JO - Kybernetika PY - 2022 SP - 218 EP - 236 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0218/ DO - 10.14736/kyb-2022-2-0218 LA - en ID - 10_14736_kyb_2022_2_0218 ER -
%0 Journal Article %A Wang, Zhaoxu %A Zhai, Chao %A Zhang, Hehong %A Xiao, Gaoxi %A Chen, Guanghou %A Xu, Yulin %T Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances %J Kybernetika %D 2022 %P 218-236 %V 58 %N 2 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0218/ %R 10.14736/kyb-2022-2-0218 %G en %F 10_14736_kyb_2022_2_0218
Wang, Zhaoxu; Zhai, Chao; Zhang, Hehong; Xiao, Gaoxi; Chen, Guanghou; Xu, Yulin. Coordination control and analysis of TCSC devices to protect electrical power systems against disruptive disturbances. Kybernetika, Tome 58 (2022) no. 2, pp. 218-236. doi: 10.14736/kyb-2022-2-0218
[1] Begovic, M., Novosel, D., Karlsson, D., Henvill, C., Michel, G.: Wide-area protection and emergency control. Proc. T. IEEE 93 (2005), 876-891. | DOI
[2] Bi, R., Lin, T., Chen, R., Ye, J., Zhou, X., Xu, X.: Alleviation of post-contingency overloads by SOCP based corrective control considering TCSC and MTDC. IET Gener. Transmiss. Distr. 12 (2018), 2155-2164. | DOI
[3] Bie, Z., Lin, Y., Li, G., Li, F.: Battling the extreme: A study on the power system resilience. Proc. T. IEEE 105 (2017), 1253-1566. | DOI
[4] Biswas, S., Nayak, K. P.: A new approach for protecting TCSC compensated transmission lines connected to DFIG-based wind farm. IEEE Trans. Industr. Inform. 17 (2021), 5282-5291. | DOI
[5] Bruno, S., De, G., La, M.: Transmission grid control through TCSC dynamic series compensation. IEEE Trans. Power Syst. 31 (2016), 3202-3211. | DOI
[6] Chang, L., Liu, Y., Jing, Y., Chen, X., Qiu, J.: Semi-globally practical finite-time ${H}_{\infty}$ control of TCSC model of power systems based on dynamic surface control. IEEE Access. 8 (2020), 10061-10069. | DOI
[7] Chen, Z., Shu, L.: Distributed aggregative optimization with quantized communication. Kybernetika 58 (2022), 123-144. | DOI | MR
[8] Chen, Y., Wang, J., Domínguez-García, A. D., Sauer, P. W.: Measurement-based estimation of the power flow Jacobian matrix. IEEE Trans. Smart Grid 7 (2015), 2507-2515. | DOI
[9] Duong, T., Yao, J., Truong, V.: A new method for secured optimal power flow under normal and network contingencies via optimal location of TCSC. Int. J. Electr. Power Energy Syst. 52 (2013), 68-80. | DOI
[10] Durković, V., Savić, A.: ATC enhancement using TCSC device regarding uncertainty of realization one of two simultaneous transactions. Int. J. Electr Power Energy Syst. 115 (2020), 105497. | DOI
[11] Halder, A., Pal, N., Mondal, D.: Transient stability analysis of a multimachine power system with TCSC controller - A zero dynamic design approach. Int. J. Electr Power Energy Syst. 97 (2018), 51-71. | DOI
[12] Hameed, S., Das, B., Pant, V.: A self-tuning fuzzy PI controller for TCSC to improve power system stability. Electr. Pow. Syst. Res. 78 (2008), 1726-1735. | DOI
[13] Hemmati, R., Faraji, H., Beigvand, Y. N.: Multi objective control scheme on DFIG wind turbine integrated with energy storage system and FACTS devices: Steady-state and transient operation improvement. Int. J. Electr. Power Energy Syst. 135 (2022), 107519. | DOI
[14] Hu, J.: On Robust Consensus of Multi-Agent Systems with Communication Delays Volume. Kybernetika 45 (2009), 768-784. | MR
[15] Hu, J., Chen, G., Li, H.: Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays. Kybernetika 47 (2011), 630-643. | MR | Zbl
[16] Liu, Y., Wu, Q., Zhou, X.: Coordinated switching controllers for transient stability of multi-machine power systems. IEEE Trans. Power Syst. 31 (2016), 3937-3949. | DOI | MR
[17] Luo, Y., Zhao, S., Yang, D., Zhang, H.: A new robust adaptive neural network backstepping control for single machine infinite power system with TCSC. IEEE/CAA J. Automat. Sinica 7 (2020), 48-56. | DOI | MR
[18] Kumar, H., Singh, P.: Coordinated control of TCSC and UPFC to aid damping oscillations in the power system. Int. J. Electron. 106 (2019), 1938-1963. | DOI
[19] Nguyen, T., Mohammadi, F.: Optimal placement of TCSC for congestion management and power loss reduction using multi-objective genetic algorithm. Sustainability 12 (2020), 2813. | DOI
[20] Panteli, M., Mancarella, P.: The grid: Stronger, bigger, smarter?: Presenting a conceptual framework of power system resilience. IEEE Pow. Energy Mag. 13 (2015), 58-66. | DOI
[21] Prakash, T., Singh, P. V., Mohanty, S. R.: A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays. Int. J. Electr Power Energy Syst. 105 (2019), 131-141. | DOI
[22] Rocchetta, R., Patelli, E.: Assessment of power grid vulnerabilities accounting for stochastic loads and model imprecision. Int. J. Electr. Power Energy Syst. 98 (2018), 219-232. | DOI
[23] Rosso, A., Canizares, C. A., Dona, V. M.: A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 18 (2003), 1487-1496. | DOI
[24] Shafik, B., Chen, H., Rashed, I., Sehiemy, A.: Adaptive multi objective parallel seeker optimization algorithm for incorporating TCSC devices into optimal power flow framework. IEEE Access. 7 (2019), 36934-36947. | DOI
[25] Terzija, V., Valverde, G., D, P, Cai., Regulski, Madani, V., Fitch, J., Skok, S., Begovic, M., Phadke, A.: Wide-area monitoring, protection, and control of future electric power networks. Proc. T. IEEE 99 (2011), 80-93. | DOI
[26] Xu, J., Yao, R., Qiu, F.: Mitigating cascading outages in severe weather using simulation-based optimization. IEEE Trans. Power Syst. 39 (2021), 204-213. | DOI
[27] Zhai, C., Xiao, G., Meng, M., Zhang, H., Li, B.: Identification of catastrophic cascading failures in protected power grids using optimal control. J. Energ. Engrg. 147 (2021), 6020001. | DOI
[28] Zhai, C., Xiao, G., Zhang, H., Wang, P., Pan, T.: Identifying disruptive contingencies for catastrophic cascading failures in power systems. Int. J. Electr. Power Energy Syst. 123 (2020), 106214. | DOI
[29] Zhai, C., Hong, Y.: Decentralized sweep coverage algorithm for multi-agent systems with workload uncertainties. Automatica 49 (2013), 2154-2159. | DOI | MR
[30] Zhai, C., Xiao, G., Zhang, H., Pan, T.: Cooperative control of TCSC to relieve the stress of cyber-physical power system. In: International Conference on Control, Automation, Robotics and Vision 2018, pp. 4849-4854. | DOI
[31] Zhai, C., Zhang, H., Xiao, G., Pan, T.: A model predictive approach to protect power systems against cascading blackouts. Int. J. Electr. Power Energy Syst. 113 (2019), 310-321. | DOI
[32] Zhang, C., Wang, X., Ming, Z., Cai, Z., Linh, H.: Enhanced nonlinear robust control for TCSC in power system. Math. Probl. Eng. 2018 (2018), 1416059. | DOI | MR
Cité par Sources :