Deterministic Markov Nash equilibria for potential discrete-time stochastic games
Kybernetika, Tome 58 (2022) no. 2, pp. 163-179
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.
In this paper, we study the problem of finding deterministic (also known as feedback or closed-loop) Markov Nash equilibria for a class of discrete-time stochastic games. In order to establish our results, we develop a potential game approach based on the dynamic programming technique. The identified potential stochastic games have Borel state and action spaces and possibly unbounded nondifferentiable cost-per-stage functions. In particular, the team (or coordination) stochastic games and the stochastic games with an action independent transition law are covered.
DOI : 10.14736/kyb-2022-2-0163
Classification : 91A10, 91A14, 91A25, 91A50, 93E20
Keywords: stochastic games; optimal control; potential approach; dynamic programming
@article{10_14736_kyb_2022_2_0163,
     author = {Fonseca-Morales, Alejandra},
     title = {Deterministic {Markov} {Nash} equilibria for potential discrete-time stochastic games},
     journal = {Kybernetika},
     pages = {163--179},
     year = {2022},
     volume = {58},
     number = {2},
     doi = {10.14736/kyb-2022-2-0163},
     mrnumber = {4467491},
     zbl = {07584151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0163/}
}
TY  - JOUR
AU  - Fonseca-Morales, Alejandra
TI  - Deterministic Markov Nash equilibria for potential discrete-time stochastic games
JO  - Kybernetika
PY  - 2022
SP  - 163
EP  - 179
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0163/
DO  - 10.14736/kyb-2022-2-0163
LA  - en
ID  - 10_14736_kyb_2022_2_0163
ER  - 
%0 Journal Article
%A Fonseca-Morales, Alejandra
%T Deterministic Markov Nash equilibria for potential discrete-time stochastic games
%J Kybernetika
%D 2022
%P 163-179
%V 58
%N 2
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0163/
%R 10.14736/kyb-2022-2-0163
%G en
%F 10_14736_kyb_2022_2_0163
Fonseca-Morales, Alejandra. Deterministic Markov Nash equilibria for potential discrete-time stochastic games. Kybernetika, Tome 58 (2022) no. 2, pp. 163-179. doi: 10.14736/kyb-2022-2-0163

[1] Dragone, D., Lambertini, L., Leitmann, G., Palestini, A.: Hamiltonian potential functions for differential games. Automatica 62 (2015), 134-138. | DOI | MR

[2] Fleming, W. H., Rishel, R. W.: Deterministic and stochastic optimal control. Springer Science and Business Media 1 (2012). | MR

[3] Fonseca-Morales, A., Hernández-Lerma, O.: Potential differential games. Dyn. Games Appl. 8 (2018), 254-279. | DOI | MR

[4] Fonseca-Morales, A., Hernández-Lerma, O.: Stochastic differential games: the potential approach. Stochastics 92, (2020), 1125-1138. | DOI | MR

[5] González-Sánchez, D., Hernández-Lerma, O.: Discrete-time Stochastic Control and Dynamic Potential Games: The Euler-equation Approach. Springer, New York 2013. | MR

[6] Gopalakrishnan, R., Marden, J.Ŕ., Wierman, A.: Potential games are necessary to ensure pure Nash equilibria in cost sharing games. Math. Oper. Res. 39 (2014), 1252-1296. | DOI | MR

[7] Hernández-Lerma, O., Lasserre, J. B.: Discrete-time Markov Control Processes: Basic Optimality Criteria. Springer-Verlag, New York 1996. | MR

[8] Hernández-Lerma, O., Lasserre, J. B.: Further Topics on Discrete-Time Markov Control Processes. Springer-Verlag, New York 1999. | MR | Zbl

[9] Luque-Vázquez, F., Minjárez-Sosa, J. A.: Empirical approximation in Markov games under unbounded payoff: discounted and average criteria. Kybernetika 53 (2017), 4, 694-716. | DOI | MR

[10] Mazalov, V. V., Rettieva, A. N., Avrachenkov, K. E.: Linear-quadratic discrete-time dynamic potential games. Autom. Remote Control 78 (2017), 1537-1544. | DOI | MR

[11] Mguni, D.: Stochastic potential games.

[12] Minjárez-Sosa, J. A.: Zero-Sum Discrete-Time Markov Games with Unknown Disturbance Distribution: Discounted and Average Criteria. Springer Nature, Cham 2020. | DOI | MR

[13] Monderer, D., Shapley, L. S.: Potential games. Game Econ. Behav. 14 (1996), 124-143. DOI  | MR

[14] Potters, J. A. M., Raghavan, T. E. S., Tijs, S. H.: Pure equilibrium strategies for stochastic games via potential functions. Adv. Dyn. Games Appl. Birkhauser, Boston 2009, pp. 433-444. | DOI | MR

[15] Robles-Aguilar, A. D., González-Sánchez, D., Minjárez-Sosa, J. A.: Estimation of equilibria in an advertising game with unknown distribution of the response to advertising efforts. In: Modern Trends in Controlled Stochastic Processes, Theory and Applications, V.III, (A. Piunovskiy and Y. Zhang Eds.), Springer Nature, Cham 2021. pp. 148-165. | DOI | MR

[16] Rosenthal, R. W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2 (1973), 65-67. | DOI | MR

[17] Slade, E. M.: What does an oligopoly maximize?. J. Ind. Econ. 42 (1994), 45-61. | DOI

[18] Macua, S. V., Zazo, S., Zazo, J.: Learning parametric closed-Loop policies for Markov potential games.

[19] Zazo, S., Zazo, J., Sánchez-Fernández, M.: A control theoretic approach to solve a constrained uplink power dynamic game. In: IEEE, 22nd European Signal Processing Conference on (EUSIPCO) 2014, pp. 401-405.

[20] Zazo, S., Valcarcel, S., Sánchez-Fernández, M., Zazo, J.: Dynamic potential games with constraints: fundamentals and applications in communications. IEEE Trans. Signal Proc. 64 (2016), 3806-3821. | DOI | MR

Cité par Sources :