Keywords: fuzzy relations; fuzzy set equations; fuzzy set inequations; monotonous operator; upper continuous lattice
@article{10_14736_kyb_2022_2_0145,
author = {Stepanovi\'c, Vanja and Tepav\v{c}evi\'c, Andreja},
title = {Fuzzy sets (in)equations with a complete codomain lattice},
journal = {Kybernetika},
pages = {145--162},
year = {2022},
volume = {58},
number = {2},
doi = {10.14736/kyb-2022-2-0145},
mrnumber = {4467490},
zbl = {07584150},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0145/}
}
TY - JOUR AU - Stepanović, Vanja AU - Tepavčević, Andreja TI - Fuzzy sets (in)equations with a complete codomain lattice JO - Kybernetika PY - 2022 SP - 145 EP - 162 VL - 58 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2022-2-0145/ DO - 10.14736/kyb-2022-2-0145 LA - en ID - 10_14736_kyb_2022_2_0145 ER -
Stepanović, Vanja; Tepavčević, Andreja. Fuzzy sets (in)equations with a complete codomain lattice. Kybernetika, Tome 58 (2022) no. 2, pp. 145-162. doi: 10.14736/kyb-2022-2-0145
[1] Baets, B. De: Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets, in: Handb. Fuzzy Sets Ser. 1 (D. Dubois, H. Prade, eds.), Kluwer Academic Publishers, 2000, pp. 291-340. | MR | Zbl
[2] Cousot, P., Cousot, R.: Constructive Versions of Tarski's Fixed Point Theorem. Pacific J. Math. 82 (1979), 43-57. | DOI | MR
[3] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order. Cambridge University Press, 1992. | MR
[4] Gottwald, S.: Approximate solutions of fuzzy relational equations and a characterization of t-norms that define metrics for fuzzy sets. Fuzzy Sets Syst. 75 (1995), 189-201. | DOI | MR
[5] Gottwald, S.: On the existence of solutions of systems of fuzzy equations. Fuzzy Sets Syst. 12 (1984), 301-302. | DOI | MR
[6] Gottwald, S., Pedrycz, W.: Solvability of fuzzy relational equations and manipulation of fuzzy data. Fuzzy Sets Syst. 18 (1986), 1-21. | MR
[7] Ignjatović, J., Ćirić, M., Bogdanovic, S.: On the greatest solution of weakly linear systems of fuzzy relation inequalities and equations. Fuzzy Sets Syst. 161 (2010), 3081-3113. | DOI | MR
[8] Ignjatović, J., Ćirić, M., Šešelja, B.: Fuzzy relational inequalities and equalities, fuzzy quasi-orders, closures and openings of fuzzy sets. Fuzzy Sets Syst. 260 (2015), 1-24. | DOI | MR
[9] Jimenez, J., Montes, S., Šešelja, B., Tepavčević, A.: Fuzzy correspondence inequations and equations. Fuzzy Sets Syst. 239 (2014), 81-90. | DOI | MR
[10] Jimenez, J., Montes, S., Šešelja, B., Tepavčević, A.: Fuzzy relational inequations and equation in the framework of control problems. In: Symbolic and Quantitative Approaches to Reasoning with Uncertainty (W. Liu, ed.), 2011, pp. 606-615; Lecture Notes in Artificial Intelligence, vol. 6717. | MR
[11] Jimenez, J., Montes, S., Šešelja, B., Tepavčević, A.: Lattice valued approach to closed sets under fuzzy relations: theory and application. Comput. Math. Appl. 62 (2011), 3729-3740. | DOI | MR
[12] Klawonn, F.: Fuzzy points, fuzzy relations and fuzzy functions. In: Discovering World with Fuzzy Logic (V. Novak, I. Perfilieva, eds.), Physica-Verlag, Heidelberg 2000, pp. 431-453. | MR
[13] Perfilieva, I.: Fuzzy function as a solution to a system of fuzzy relation equations. Int. J. Gen. Syst. 32 147 (2003), 361-372. | MR
[14] Perfilieva, I.: Fuzzy function as an approximate solution to a system of fuzzy relation equations. Fuzzy Sets Syst. 147 (2004), 363-383. | DOI | MR
[15] Perfilieva, I.: System of fuzzy relation equations as a continuous model of IF-THEN rules. Inf. Sci. 177 (2007), 3218-3227. | DOI | MR
[16] Sanchez, E.: Resolution of eigen fuzzy sets equations. Fuzzy Sets Syst. 1 (1978), 69-74. | DOI | MR | Zbl
[17] Sanchez, E.: Solution of fuzzy equations with extended operations. Fuzzy Sets Syst. 12 (1984), 237-248. | DOI | MR
[18] Šešelja, B., Tepavčević, A.: Weak Congruences in Universal Algebra. Institute of Mathematics, Novi Sad 2001. | MR
[19] Stepanović, V.: Fuzzy set inequations and equations with a meet-continuous codomain lattice. J. Intell. Fuzzy Syst. 34 (2018), 4009-4021. | DOI
[20] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285-309. | DOI | MR
[21] Tepavčević, A.: Diagonal relation as a continuous element in a weak congruence lattice. In: Proc. International Conference on General Algebra and Ordered Sets, Olomouc 1994, pp. 156-163. | MR
Cité par Sources :