Some limit behavior for linear combinations of order statistics
Kybernetika, Tome 57 (2021) no. 6, pp. 970-988 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained.
In the present paper, we establish the moderate and large deviations for the linear combinations of uniform order statistics. As applications, the moderate and large deviations for the $k$-th order statistics from uniform distribution, Gini mean difference statistics and the $k$-th order statistics from general continuous distribution are obtained.
DOI : 10.14736/kyb-2021-6-0970
Classification : 62G30
Keywords: linear combinations of order statistics; large deviation; moderate deviation; Gini mean difference statistics
@article{10_14736_kyb_2021_6_0970,
     author = {Miao, Yu and Ma, Mengyao},
     title = {Some limit behavior for linear combinations of order statistics},
     journal = {Kybernetika},
     pages = {970--988},
     year = {2021},
     volume = {57},
     number = {6},
     doi = {10.14736/kyb-2021-6-0970},
     mrnumber = {4376871},
     zbl = {07478650},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0970/}
}
TY  - JOUR
AU  - Miao, Yu
AU  - Ma, Mengyao
TI  - Some limit behavior for linear combinations of order statistics
JO  - Kybernetika
PY  - 2021
SP  - 970
EP  - 988
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0970/
DO  - 10.14736/kyb-2021-6-0970
LA  - en
ID  - 10_14736_kyb_2021_6_0970
ER  - 
%0 Journal Article
%A Miao, Yu
%A Ma, Mengyao
%T Some limit behavior for linear combinations of order statistics
%J Kybernetika
%D 2021
%P 970-988
%V 57
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0970/
%R 10.14736/kyb-2021-6-0970
%G en
%F 10_14736_kyb_2021_6_0970
Miao, Yu; Ma, Mengyao. Some limit behavior for linear combinations of order statistics. Kybernetika, Tome 57 (2021) no. 6, pp. 970-988. doi: 10.14736/kyb-2021-6-0970

[1] Aaronson, J., Burton, R., Dehling, H., Gilat, D., Hill, T., Weiss, B.: Strong laws for $L$- and $U$-statistics. Trans. Amer. Math. Soc. 348 (1996), 2845-2866. | DOI | MR

[2] Aleshkyavichene, A. K.: Large and moderate deviations for $L$-statistics. Lithuanian Math. J. 31 (1991), 145-156. | DOI | MR

[3] Bentkus, V., Zitikis, R.: Probabilities of large deviations for $L$-statistics. Lithuanian Math. J. 30 (1990), 215-222. | DOI | MR

[4] Bjerve, S.: Error bounds for linear combinations of order statistics. Ann. Statist. 5 (1977), 357-369. | DOI | MR

[5] Boistard, H.: Large deviations for $L$-statistics. Statist. Decisions 25 (2007), 89-125. | DOI | MR

[6] Callaert, H., Vandemaele, M., Veraverbeke, N.: A Cramér type large deviation theorem for trimmed linear combinations of order statistics. Comm. Statist. A-Theory Methods 11 (1982), 2689-2698. | DOI | MR

[7] Chernoff, H., Gastwirth, J. L., Johns, M. V. J.: Asymptotic distribution of linear combinations of functions of order statistics with applications to estimation. Ann. Math. Statist 38 (1967), 52-72. | DOI | MR

[8] H., David, A., Nagaraja, H. N.: Order Statistics. Third edition. Wiley-Interscience, John Wiley and Sons,], Hoboken, NJ, 2003. | MR

[9] Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Springer-Verlag, Berlin 2010. | MR

[10] Grané, A., Tchirina, A. V.: Asymptotic properties of a goodness-of-fit test based on maximum correlations. Statistics 47 (2013), 202-215 | DOI | MR

[11] Gribkova, N.: Cramér type large deviations for trimmed $L$-statistics. Probab. Math. Statist. 37 (2017), 101-118. | DOI | MR

[12] Helmers, R.: The order of the normal approximation for linear combinations of order statistics with smooth weight functions. Ann. Probab. 5 (1977), 940-953. | DOI | MR

[13] Helmers, R.: A Berry-Esseen theorem for linear combinations of order statistics. Ann. Probab. 9 (1981), 342-347. | DOI | MR

[14] Helmers, R., Janssen, P., Serfling, R.: Glivenko-Cantelli properties of some generalized empirical DF's and strong convergence of generalized $L$-statistics. Probab. Theory Related Fields 79 (1988), 75-93. | DOI | MR

[15] Li, D. L., Rao, M. B., Tomkins, R. J.: The law of the iterated logarithm and central limit theorem for $L$-statistics. J. Multivariate Anal. 78 (2001), 191-217. | DOI | MR

[16] Jiang, H.: Moderate deviations for a class of $L$-statistics. Acta Appl. Math. 109 (2010), 1165-1178. | DOI | MR

[17] Jiang, H., Wang, W. G., Yu, L.: An exponential nonuniform convergence rate for a class of normalized $L$-statistics. J. Statist. Plann. Inference 171 (2016), 135-146. | DOI | MR

[18] Mason, D. M.: Some characterizations of strong laws for linear functions of order statistics. Ann. Probab. 10 (1982), 1051-1057. | DOI | MR

[19] Mason, D. M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of trimmed $L$-statistics. J. Statist. Plann. Inference 25 (1990), 111-139. | DOI | MR

[20] D., Mason, M., Shorack, G. R.: Necessary and sufficient conditions for asymptotic normality of $L$-statistics. Ann. Probab. 20 (1992), 1779-1804. | DOI | MR

[21] Miao, Y., Chen, Y. X., Xu, S. F.: Asymptotic properties of the deviation between order statistics and $p$-quantile. Comm. Statist. Theory Methods 40 (2011), 8-14. | DOI | MR

[22] Plachky, D., Steinebach, J.: A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hungar. 6 (1975), 343-345. | DOI | MR

[23] Sen, P. K.: An invariance principle for linear combinations of order statistics. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 42 (1978), 327-340. | DOI | MR

[24] Reiss, R. D.: Approximate Distributions of Order Statistics. With Applications to Nonparametric Statistics. Springer-Verlag, New York 1989. | MR

[25] Stigler, S. M.: Linear functions of order statistics with smooth weight functions. Ann. Statist. 2 (1974), 676-693. | DOI | MR

[26] Stigler, S. M.: Correction to: "Linear functions of order statistics with smooth weight functions'' (Ann. Statist. 2 (1974), 676-693). Ann. Statist. 7 (1979), 466. | DOI | MR

[27] A., Tchirina, V.: Asymptotic properties of exponentiality tests based on $L$-statistics. Acta Appl. Math. 97 (2007), 297-309. | DOI | MR

[28] Zwet, W. R. van: A strong law for linear functions of order statistics. Ann. Probab. 8 (1980), 986-990. | MR

[29] Vandemaele, M., Veraverbeke, N.: Cramér type large deviations for linear combinations of order statistics. Ann. Probab. 10 (1982), 423-434. | DOI | MR

[30] Wellner, J. A.: A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Statist. 5 (1977), 473-480. | DOI | MR

[31] Wellner, J. A.: Correction to: "A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics''. Ann. Statist. 6 (1978), 1394. | DOI | MR

[32] Xu, S. F., Ge, L., Miao, Y.: On the Bahadur representation of sample quantiles and order statistics for NA sequences. J. Korean Statist. Soc. 42 (2013), 1-7. | DOI | MR

[33] Xu, S. F., C., Mei, L., Miao, Y.: Limit theorems for ratios of order statistics from uniform distributions. J. Inequal. Appl. 2019, Paper No. 303. | DOI | MR

[34] Xu, S. F., Miao, Y.: Uniform moderate deviation of sample quantiles and order statistics. Bull. Korean Math. Soc. 51 (2014), 1399-1409. | DOI | MR

[35] Xu, S. F., Miao, Y.: Some limit theorems for ratios of order statistics from uniform random variables. J. Inequal. Appl. 2017, Paper No. 295. | DOI | MR

[36] Yao, S. X., Miao., Y., Nadarajah, S.: Exponential convergence for the $k$th order statistics. Filomat 29 (2015), 977-984. | DOI | MR

Cité par Sources :