Keywords: aggregation functions; invariantness; homogeneity; quasi-homogeneity
@article{10_14736_kyb_2021_6_0958,
author = {Su, Yong and Mesiar, Radko},
title = {Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions},
journal = {Kybernetika},
pages = {958--969},
year = {2021},
volume = {57},
number = {6},
doi = {10.14736/kyb-2021-6-0958},
mrnumber = {4376870},
zbl = {07478649},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/}
}
TY - JOUR AU - Su, Yong AU - Mesiar, Radko TI - Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions JO - Kybernetika PY - 2021 SP - 958 EP - 969 VL - 57 IS - 6 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/ DO - 10.14736/kyb-2021-6-0958 LA - en ID - 10_14736_kyb_2021_6_0958 ER -
%0 Journal Article %A Su, Yong %A Mesiar, Radko %T Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions %J Kybernetika %D 2021 %P 958-969 %V 57 %N 6 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/ %R 10.14736/kyb-2021-6-0958 %G en %F 10_14736_kyb_2021_6_0958
Su, Yong; Mesiar, Radko. Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions. Kybernetika, Tome 57 (2021) no. 6, pp. 958-969. doi: 10.14736/kyb-2021-6-0958
[1] Aczél, J.: Lectures on Functional Equations and their Applications. Acad. Press, New York 1966. | MR
[2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006. | MR
[3] Dujmovic, J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158. | DOI | MR
[4] Ebanks, B. R.: Quasi-homogeneous associative functions. Int. J. Math. Math. Sci. 21 (1998), 351-358. | DOI | MR
[5] Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Economic Theory 56 (2014), 1, 33-58. | DOI | MR
[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, New York 2009. | MR | Zbl
[7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht 2000. | MR | Zbl
[8] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E., Rocha, M.: An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355-356 (2016), 328-347. | DOI
[9] Nelsen, R. E.: An Introduction to Copulas. Second edition. Springer, New York 2006. | MR
[10] Mayor, G., Mesiar, R., Torrens, J.: On quasi-homogeneous copulas. Kybernetika 44 (2008), 6, 745-755. | DOI | MR
[11] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. | DOI | MR | Zbl
[12] Mesiar, R., Rückschlossová, T.: Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63-73. | DOI | MR
[13] Rückschlossová, T., Rückschloss, R.: Homogeneous aggregation operators. Kybernetika 42(3) (2006), 279-286. | MR
[14] Xie, A., Su, Y., Liu, H.: On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems 287 (2016), 203-212. | DOI | MR
[15] Su, Y., Zong, W., Mesiar, R.: Characterization of homogeneous and quasi-homogeneous binary aggregation functions. Fuzzy Sets and Systems, in press. | DOI
Cité par Sources :