Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
Kybernetika, Tome 57 (2021) no. 6, pp. 958-969.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones.
DOI : 10.14736/kyb-2021-6-0958
Classification : 03E72
Keywords: aggregation functions; invariantness; homogeneity; quasi-homogeneity
@article{10_14736_kyb_2021_6_0958,
     author = {Su, Yong and Mesiar, Radko},
     title = {Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions},
     journal = {Kybernetika},
     pages = {958--969},
     publisher = {mathdoc},
     volume = {57},
     number = {6},
     year = {2021},
     doi = {10.14736/kyb-2021-6-0958},
     mrnumber = {4376870},
     zbl = {07478649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/}
}
TY  - JOUR
AU  - Su, Yong
AU  - Mesiar, Radko
TI  - Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
JO  - Kybernetika
PY  - 2021
SP  - 958
EP  - 969
VL  - 57
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/
DO  - 10.14736/kyb-2021-6-0958
LA  - en
ID  - 10_14736_kyb_2021_6_0958
ER  - 
%0 Journal Article
%A Su, Yong
%A Mesiar, Radko
%T Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
%J Kybernetika
%D 2021
%P 958-969
%V 57
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/
%R 10.14736/kyb-2021-6-0958
%G en
%F 10_14736_kyb_2021_6_0958
Su, Yong; Mesiar, Radko. Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions. Kybernetika, Tome 57 (2021) no. 6, pp. 958-969. doi : 10.14736/kyb-2021-6-0958. http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/

Cité par Sources :