Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
Kybernetika, Tome 57 (2021) no. 6, pp. 958-969 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones.
Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones.
DOI : 10.14736/kyb-2021-6-0958
Classification : 03E72
Keywords: aggregation functions; invariantness; homogeneity; quasi-homogeneity
@article{10_14736_kyb_2021_6_0958,
     author = {Su, Yong and Mesiar, Radko},
     title = {Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions},
     journal = {Kybernetika},
     pages = {958--969},
     year = {2021},
     volume = {57},
     number = {6},
     doi = {10.14736/kyb-2021-6-0958},
     mrnumber = {4376870},
     zbl = {07478649},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/}
}
TY  - JOUR
AU  - Su, Yong
AU  - Mesiar, Radko
TI  - Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
JO  - Kybernetika
PY  - 2021
SP  - 958
EP  - 969
VL  - 57
IS  - 6
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/
DO  - 10.14736/kyb-2021-6-0958
LA  - en
ID  - 10_14736_kyb_2021_6_0958
ER  - 
%0 Journal Article
%A Su, Yong
%A Mesiar, Radko
%T Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions
%J Kybernetika
%D 2021
%P 958-969
%V 57
%N 6
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-6-0958/
%R 10.14736/kyb-2021-6-0958
%G en
%F 10_14736_kyb_2021_6_0958
Su, Yong; Mesiar, Radko. Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions. Kybernetika, Tome 57 (2021) no. 6, pp. 958-969. doi: 10.14736/kyb-2021-6-0958

[1] Aczél, J.: Lectures on Functional Equations and their Applications. Acad. Press, New York 1966. | MR

[2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions. Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006. | MR

[3] Dujmovic, J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation. Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158. | DOI | MR

[4] Ebanks, B. R.: Quasi-homogeneous associative functions. Int. J. Math. Math. Sci. 21 (1998), 351-358. | DOI | MR

[5] Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals. Economic Theory 56 (2014), 1, 33-58. | DOI | MR

[6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, New York 2009. | MR | Zbl

[7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht 2000. | MR | Zbl

[8] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E., Rocha, M.: An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms. Inform. Sci. 355-356 (2016), 328-347. | DOI

[9] Nelsen, R. E.: An Introduction to Copulas. Second edition. Springer, New York 2006. | MR

[10] Mayor, G., Mesiar, R., Torrens, J.: On quasi-homogeneous copulas. Kybernetika 44 (2008), 6, 745-755. | DOI | MR

[11] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals. Int. J. Approx. Reasoning 54 (2013), 357-364. | DOI | MR | Zbl

[12] Mesiar, R., Rückschlossová, T.: Characterization of invariant aggregation operators. Fuzzy Sets and Systems 142 (2004), 63-73. | DOI | MR

[13] Rückschlossová, T., Rückschloss, R.: Homogeneous aggregation operators. Kybernetika 42(3) (2006), 279-286. | MR

[14] Xie, A., Su, Y., Liu, H.: On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms. Fuzzy Sets and Systems 287 (2016), 203-212. | DOI | MR

[15] Su, Y., Zong, W., Mesiar, R.: Characterization of homogeneous and quasi-homogeneous binary aggregation functions. Fuzzy Sets and Systems, in press. | DOI

Cité par Sources :