Keywords: linear neutral differential equation; exponential stability; time-varying systems
@article{10_14736_kyb_2021_5_0776,
author = {Ngoc, Pham Huu Anh and Tran, Thai Bao and Huy, Nguyen Dinh},
title = {New criteria for exponential stability of linear neutral differential systems with distributed delays},
journal = {Kybernetika},
pages = {776--784},
year = {2021},
volume = {57},
number = {5},
doi = {10.14736/kyb-2021-5-0776},
mrnumber = {4363236},
zbl = {07478639},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/}
}
TY - JOUR AU - Ngoc, Pham Huu Anh AU - Tran, Thai Bao AU - Huy, Nguyen Dinh TI - New criteria for exponential stability of linear neutral differential systems with distributed delays JO - Kybernetika PY - 2021 SP - 776 EP - 784 VL - 57 IS - 5 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/ DO - 10.14736/kyb-2021-5-0776 LA - en ID - 10_14736_kyb_2021_5_0776 ER -
%0 Journal Article %A Ngoc, Pham Huu Anh %A Tran, Thai Bao %A Huy, Nguyen Dinh %T New criteria for exponential stability of linear neutral differential systems with distributed delays %J Kybernetika %D 2021 %P 776-784 %V 57 %N 5 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/ %R 10.14736/kyb-2021-5-0776 %G en %F 10_14736_kyb_2021_5_0776
Ngoc, Pham Huu Anh; Tran, Thai Bao; Huy, Nguyen Dinh. New criteria for exponential stability of linear neutral differential systems with distributed delays. Kybernetika, Tome 57 (2021) no. 5, pp. 776-784. doi: 10.14736/kyb-2021-5-0776
[1] Agarwal, R. P., Grace, S. R.: Asymptotic stability of certain neutral differential equations. Math.Computer Modell. 31 (2000), 9-15. | DOI
[2] Alexandrova, I. V., Zhabko, A. P.: Stability of neutral type delay systems: A joint Lyapunov-Krasovskii and Razumikhin approach. Automatica 106 (2019), 83-90. | DOI
[3] Bellen, A., Guglielmi, N., Ruehli, A. E.: Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Systems I Fundamental Theory Appl. 46 (1999), 212-215. | DOI
[4] Duda, J: A Lyapunov functional for a neutral system with a time-varying delay. Bull. Polish Acad. Sci.: Techn. Sci. 61 (2013), 911-918.
[5] Desoer, CA., Vidyasagar, M.: Feedback Synthesis: Input-Output Properties. SIAM, Philadelphia 2009.
[6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 309-319. | DOI | Zbl
[7] Gil, M.: Stability of Neutral Functional Differential Equations. Atlantis Press, Amsterdam, Paris, Bejing 2014.
[8] Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer-Verlag, Berlin 1993. | Zbl
[9] Hu, G. D., Hu, G. D.: Simple criteria for stability of neutral systems with multiple delays. Int. J. Systems Science 28 (1997), 1325-1328. | DOI
[10] Kolmanovskii, V., Mishkis, A.: Introduction to the Theory and Applications of Functional Differential Equations: Mathematics and its Applications. Kluwer Academic Publisher, Dordreht 1999.
[11] Li, L.: Stability of linear neutral delay-differential systems. Bull. Austral. Math. Soc. 38 (1988), 339-344. | DOI
[12] Li, Z., Lam, J., Wang, Y.: Stability analysis of linear stochastic neutral-type time-delay systems with two delays. Automatica 91 (2018), 179-189. | DOI
[13] Ngoc, P. H. A., Trinh, H.: Novel criteria for exponential stability of linear neutral time-varying differential systems. IEEE Trans. Automat. Control 61 (2016), 1590-1594. | DOI
[14] Verriest, E., Niculescu, S.: Delay-independent stability of linear neutral systems: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer-Verlag, London 1998, pp. 92-100.
[15] Zhao, N., Zhang, X., Xue, Y., Shi, P.: Necessary conditions for exponential stability of linear neutral type systems with multiple time delays. J. Franklin Inst. 355 (2018), 458-473. | DOI
Cité par Sources :