New criteria for exponential stability of linear neutral differential systems with distributed delays
Kybernetika, Tome 57 (2021) no. 5, pp. 776-784
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present new explicit criteria for exponential stability of general linear neutral time-varying differential systems. Particularly, our results give extensions of the well-known stability criteria reported in [3,11] to linear neutral time-varying differential systems with distributed delays.
We present new explicit criteria for exponential stability of general linear neutral time-varying differential systems. Particularly, our results give extensions of the well-known stability criteria reported in [3,11] to linear neutral time-varying differential systems with distributed delays.
DOI : 10.14736/kyb-2021-5-0776
Classification : 34K20
Keywords: linear neutral differential equation; exponential stability; time-varying systems
@article{10_14736_kyb_2021_5_0776,
     author = {Ngoc, Pham Huu Anh and Tran, Thai Bao and Huy, Nguyen Dinh},
     title = {New criteria for exponential stability of linear neutral differential systems with distributed delays},
     journal = {Kybernetika},
     pages = {776--784},
     year = {2021},
     volume = {57},
     number = {5},
     doi = {10.14736/kyb-2021-5-0776},
     mrnumber = {4363236},
     zbl = {07478639},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/}
}
TY  - JOUR
AU  - Ngoc, Pham Huu Anh
AU  - Tran, Thai Bao
AU  - Huy, Nguyen Dinh
TI  - New criteria for exponential stability of linear neutral differential systems with distributed delays
JO  - Kybernetika
PY  - 2021
SP  - 776
EP  - 784
VL  - 57
IS  - 5
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/
DO  - 10.14736/kyb-2021-5-0776
LA  - en
ID  - 10_14736_kyb_2021_5_0776
ER  - 
%0 Journal Article
%A Ngoc, Pham Huu Anh
%A Tran, Thai Bao
%A Huy, Nguyen Dinh
%T New criteria for exponential stability of linear neutral differential systems with distributed delays
%J Kybernetika
%D 2021
%P 776-784
%V 57
%N 5
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-5-0776/
%R 10.14736/kyb-2021-5-0776
%G en
%F 10_14736_kyb_2021_5_0776
Ngoc, Pham Huu Anh; Tran, Thai Bao; Huy, Nguyen Dinh. New criteria for exponential stability of linear neutral differential systems with distributed delays. Kybernetika, Tome 57 (2021) no. 5, pp. 776-784. doi: 10.14736/kyb-2021-5-0776

[1] Agarwal, R. P., Grace, S. R.: Asymptotic stability of certain neutral differential equations. Math.Computer Modell. 31 (2000), 9-15. | DOI

[2] Alexandrova, I. V., Zhabko, A. P.: Stability of neutral type delay systems: A joint Lyapunov-Krasovskii and Razumikhin approach. Automatica 106 (2019), 83-90. | DOI

[3] Bellen, A., Guglielmi, N., Ruehli, A. E.: Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Systems I Fundamental Theory Appl. 46 (1999), 212-215. | DOI

[4] Duda, J: A Lyapunov functional for a neutral system with a time-varying delay. Bull. Polish Acad. Sci.: Techn. Sci. 61 (2013), 911-918.

[5] Desoer, CA., Vidyasagar, M.: Feedback Synthesis: Input-Output Properties. SIAM, Philadelphia 2009.

[6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 309-319. | DOI | Zbl

[7] Gil, M.: Stability of Neutral Functional Differential Equations. Atlantis Press, Amsterdam, Paris, Bejing 2014.

[8] Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer-Verlag, Berlin 1993. | Zbl

[9] Hu, G. D., Hu, G. D.: Simple criteria for stability of neutral systems with multiple delays. Int. J. Systems Science 28 (1997), 1325-1328. | DOI

[10] Kolmanovskii, V., Mishkis, A.: Introduction to the Theory and Applications of Functional Differential Equations: Mathematics and its Applications. Kluwer Academic Publisher, Dordreht 1999.

[11] Li, L.: Stability of linear neutral delay-differential systems. Bull. Austral. Math. Soc. 38 (1988), 339-344. | DOI

[12] Li, Z., Lam, J., Wang, Y.: Stability analysis of linear stochastic neutral-type time-delay systems with two delays. Automatica 91 (2018), 179-189. | DOI

[13] Ngoc, P. H. A., Trinh, H.: Novel criteria for exponential stability of linear neutral time-varying differential systems. IEEE Trans. Automat. Control 61 (2016), 1590-1594. | DOI

[14] Verriest, E., Niculescu, S.: Delay-independent stability of linear neutral systems: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer-Verlag, London 1998, pp. 92-100.

[15] Zhao, N., Zhang, X., Xue, Y., Shi, P.: Necessary conditions for exponential stability of linear neutral type systems with multiple time delays. J. Franklin Inst. 355 (2018), 458-473. | DOI

Cité par Sources :