Keywords: principal topology; bounded lattice; generating method; uninorm; triangular norm
@article{10_14736_kyb_2021_4_0714,
author = {Kara\c{c}al, Funda and Ertu\u{g}rul, \"Umit and Kesicio\u{g}lu, M. Nesibe},
title = {Generating methods for principal topologies on bounded lattices},
journal = {Kybernetika},
pages = {714--736},
year = {2021},
volume = {57},
number = {4},
doi = {10.14736/kyb-2021-4-0714},
mrnumber = {4332889},
zbl = {07478636},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/}
}
TY - JOUR AU - Karaçal, Funda AU - Ertuğrul, Ümit AU - Kesicioğlu, M. Nesibe TI - Generating methods for principal topologies on bounded lattices JO - Kybernetika PY - 2021 SP - 714 EP - 736 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/ DO - 10.14736/kyb-2021-4-0714 LA - en ID - 10_14736_kyb_2021_4_0714 ER -
%0 Journal Article %A Karaçal, Funda %A Ertuğrul, Ümit %A Kesicioğlu, M. Nesibe %T Generating methods for principal topologies on bounded lattices %J Kybernetika %D 2021 %P 714-736 %V 57 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/ %R 10.14736/kyb-2021-4-0714 %G en %F 10_14736_kyb_2021_4_0714
Karaçal, Funda; Ertuğrul, Ümit; Kesicioğlu, M. Nesibe. Generating methods for principal topologies on bounded lattices. Kybernetika, Tome 57 (2021) no. 4, pp. 714-736. doi: 10.14736/kyb-2021-4-0714
[1] Alexandroff, P.: Diskrete Räume. Mat. Sb. (N.S.) 2 (1937), 501-518.
[2] Birkhoff, G.: Lattice Theory. American Mathematical Society, New York 1948. | Zbl
[3] Chen, X.: Cores of Alexandroff spaces.
[4] Çaylı, G. D., Ertuğrul, Ü., Köroğlu, T., Karaçal, F.: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 911-921. | DOI
[5] Dahane, I., Lazaar, S., Richmond, T., Turki, T.: On resolvable primal spaces. Quaestiones Mathematicae (2018), 15-35. | DOI
[6] Dixmier, J.: General Topology. Springer-Verlag, 1984.
[7] Echi, O.: Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces. Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2003), 489-507.
[8] Echi, O.: The category of flows of Set and Top. Topol. Appl. 159 (2012), 2357-2366. | DOI
[9] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. | DOI
[10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. | DOI
[11] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. | DOI | Zbl
[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | MR | Zbl
[13] Karaçal, F., Köroğlu, T.: An Alexandroff Topology Obtained from Uninorms. Submitted (2019).
[14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets and Systems 261 (2015), 33-43. | DOI
[15] Katsevich, A., Mikusiński, P.: Order of spaces of pseudoquotients. Top. Proc. 44 (2014), 21-31.
[16] Kelley, J. L.: General Topology. Springer, New York 1975.
[17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: Some notes on U-partial order. Kybernetika 55 (2019), 3, 518-530. | DOI
[18] Lai, H., Zhang, D.: Fuzzy preorder and fuzzy topology. Fuzzy Sets Systems 157 (2006), 14, 1865-1885. | DOI
[19] Lazaar, S., Richmond, T., Houssem, S.: The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Comm. Algebra (2019). | DOI
[20] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaest. Math. 40 (2017), 17-28. | DOI
[21] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Information Sciences 55 (1991), 77-97. | DOI | Zbl
[22] Steiner, A. K.: The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122 (1969), 379-398. | DOI
[23] Walden, P.: Effective topology from spacetime tomography. J. Physics: Conference Series 68 (2007), 12-28.
[24] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. | DOI | Zbl
[25] Zhang, H.-P., Pérez.-Fernández, R., Baets, B. De: Topologies induced by the representatiton of a betweenness relation as a family of order relations. Topol. Appl. 258 (2019), 100-114. | DOI
Cité par Sources :