Generating methods for principal topologies on bounded lattices
Kybernetika, Tome 57 (2021) no. 4, pp. 714-736 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.
In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.
DOI : 10.14736/kyb-2021-4-0714
Classification : 03B52, 03E72, 06B30, 06F30, 08A72, 54A10
Keywords: principal topology; bounded lattice; generating method; uninorm; triangular norm
@article{10_14736_kyb_2021_4_0714,
     author = {Kara\c{c}al, Funda and Ertu\u{g}rul, \"Umit and Kesicio\u{g}lu, M. Nesibe},
     title = {Generating methods for principal topologies on bounded lattices},
     journal = {Kybernetika},
     pages = {714--736},
     year = {2021},
     volume = {57},
     number = {4},
     doi = {10.14736/kyb-2021-4-0714},
     mrnumber = {4332889},
     zbl = {07478636},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/}
}
TY  - JOUR
AU  - Karaçal, Funda
AU  - Ertuğrul, Ümit
AU  - Kesicioğlu, M. Nesibe
TI  - Generating methods for principal topologies on bounded lattices
JO  - Kybernetika
PY  - 2021
SP  - 714
EP  - 736
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/
DO  - 10.14736/kyb-2021-4-0714
LA  - en
ID  - 10_14736_kyb_2021_4_0714
ER  - 
%0 Journal Article
%A Karaçal, Funda
%A Ertuğrul, Ümit
%A Kesicioğlu, M. Nesibe
%T Generating methods for principal topologies on bounded lattices
%J Kybernetika
%D 2021
%P 714-736
%V 57
%N 4
%U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0714/
%R 10.14736/kyb-2021-4-0714
%G en
%F 10_14736_kyb_2021_4_0714
Karaçal, Funda; Ertuğrul, Ümit; Kesicioğlu, M. Nesibe. Generating methods for principal topologies on bounded lattices. Kybernetika, Tome 57 (2021) no. 4, pp. 714-736. doi: 10.14736/kyb-2021-4-0714

[1] Alexandroff, P.: Diskrete Räume. Mat. Sb. (N.S.) 2 (1937), 501-518.

[2] Birkhoff, G.: Lattice Theory. American Mathematical Society, New York 1948. | Zbl

[3] Chen, X.: Cores of Alexandroff spaces.

[4] Çaylı, G. D., Ertuğrul, Ü., Köroğlu, T., Karaçal, F.: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 911-921. | DOI

[5] Dahane, I., Lazaar, S., Richmond, T., Turki, T.: On resolvable primal spaces. Quaestiones Mathematicae (2018), 15-35. | DOI

[6] Dixmier, J.: General Topology. Springer-Verlag, 1984.

[7] Echi, O.: Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces. Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2003), 489-507.

[8] Echi, O.: The category of flows of Set and Top. Topol. Appl. 159 (2012), 2357-2366. | DOI

[9] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. | DOI

[10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. | DOI

[11] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. | DOI | Zbl

[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. | MR | Zbl

[13] Karaçal, F., Köroğlu, T.: An Alexandroff Topology Obtained from Uninorms. Submitted (2019).

[14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets and Systems 261 (2015), 33-43. | DOI

[15] Katsevich, A., Mikusiński, P.: Order of spaces of pseudoquotients. Top. Proc. 44 (2014), 21-31.

[16] Kelley, J. L.: General Topology. Springer, New York 1975.

[17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: Some notes on U-partial order. Kybernetika 55 (2019), 3, 518-530. | DOI

[18] Lai, H., Zhang, D.: Fuzzy preorder and fuzzy topology. Fuzzy Sets Systems 157 (2006), 14, 1865-1885. | DOI

[19] Lazaar, S., Richmond, T., Houssem, S.: The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Comm. Algebra (2019). | DOI

[20] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaest. Math. 40 (2017), 17-28. | DOI

[21] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Information Sciences 55 (1991), 77-97. | DOI | Zbl

[22] Steiner, A. K.: The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122 (1969), 379-398. | DOI

[23] Walden, P.: Effective topology from spacetime tomography. J. Physics: Conference Series 68 (2007), 12-28.

[24] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. | DOI | Zbl

[25] Zhang, H.-P., Pérez.-Fernández, R., Baets, B. De: Topologies induced by the representatiton of a betweenness relation as a family of order relations. Topol. Appl. 258 (2019), 100-114. | DOI

Cité par Sources :