Keywords: admissibility; extended balanced loss function; linear admissible estimator
@article{10_14736_kyb_2021_4_0613,
author = {Mirezi, Buatikan and Ka\c{c}{\i}ranlar, Selahattin},
title = {Characterization of admissible linear estimators under extended balanced loss function},
journal = {Kybernetika},
pages = {613--627},
year = {2021},
volume = {57},
number = {4},
doi = {10.14736/kyb-2021-4-0613},
mrnumber = {4332884},
zbl = {07478631},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0613/}
}
TY - JOUR AU - Mirezi, Buatikan AU - Kaçıranlar, Selahattin TI - Characterization of admissible linear estimators under extended balanced loss function JO - Kybernetika PY - 2021 SP - 613 EP - 627 VL - 57 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0613/ DO - 10.14736/kyb-2021-4-0613 LA - en ID - 10_14736_kyb_2021_4_0613 ER -
%0 Journal Article %A Mirezi, Buatikan %A Kaçıranlar, Selahattin %T Characterization of admissible linear estimators under extended balanced loss function %J Kybernetika %D 2021 %P 613-627 %V 57 %N 4 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-4-0613/ %R 10.14736/kyb-2021-4-0613 %G en %F 10_14736_kyb_2021_4_0613
Mirezi, Buatikan; Kaçıranlar, Selahattin. Characterization of admissible linear estimators under extended balanced loss function. Kybernetika, Tome 57 (2021) no. 4, pp. 613-627. doi: 10.14736/kyb-2021-4-0613
[1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in restricted linear models. Linear Algebra Appl. 70 (1985), 9-19. | DOI
[2] Baksalary, J. K., Markiewicz, A.: Characterizations of admissible linear estimators in restricted linear models. Statist. Planning Inference 13 (1986), 395-398. | DOI
[3] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model. Statist. Planning Inference 19 (1988), 349-359. | DOI | Zbl
[4] Cohen, A.: All admissible linear estimates of the mean vector. Ann. Math. Statist. 37 (1966), 458-463. | DOI
[5] Chen, X. R., Chen, G., Wu, Q., Zhao, L.: Parameter Estimation Theory for Linear Models. Science Press, Beijing 1985.
[6] Chaturvedi, A., Shalabh: Bayesian estimation of regression coefficients under extended balanced loss function. Comm. Statist. Theory and Methods 43 (2014), 4253-4264. | DOI
[7] Cao, M.: Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss-Markoff model under a balanced loss function. Multivariate Analysis 124 (2014), 25-30. | DOI
[8] Cao, M., He, D.: Linearly admissible estimators on linear functions of regression coefficient under balanced loss function. Comm. Statist. Theory and Methods 48 (2019), 2700-2706. | DOI
[9] Dong, L., Wu, Q.: Necessary and sufficient conditions for linear estimators of stochastic regression coefficients and parameters to be admissible under quadratic loss. Acta Math. Sinica 31 (1988), 145-157.
[10] Graybill, F. A.: Matrices With Application in Statistics. Californie 1983.
[11] Gro{\ss}, J.: Linear Regression. Springer-Verlag, Berlin Heidelberg 2003.
[12] Gross, J., Markiewicz, A.: Characterizations of admissible linear estimators in the linear model. Linear Algebra Appl. 388 (2004), 239-248. | DOI
[13] Hoffmann, K.: All admissible linear estimators of the regression parameter vector in the case of an arbitrary parameter subset. Statist. Planning Inference 48 (1995), 371-377. | DOI
[14] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators. Multivariate Analysis 24 (1998), 11-30. | DOI | Zbl
[15] Kaçiranlar, S., Dawoud, I.: The optimal extended balanced loss function estimators. Comput. Appl. Math. 345 (2019), 86-98. | DOI
[16] Lehmann, E. L., Casella, G.: Theory of Point Estimation. Second edition. Springer-Verlag, New York 2005.
[17] Markiewicz, A.: Characterization of general ridge estimators. Statist. Probab. Lett. 27 (1996), 145-148. | DOI
[18] Özbay, N., Kaçiranlar, S.: The performance of the adaptive optimal estimator under the extended balanced loss function. Comm. Statist. Theory and Methods 46 (2017), 11315-11326. | DOI
[19] Rao, C. R.: Estimation of parameters in a linear model. Ann. Statist. 4 (1976), 1023-1037. | Zbl
[20] St\k{e}pniak, C.: Admissible linear estimators in mixed linear models. J. Multivariate Analysis 31 (1989), 90-106. | DOI
[21] Shalabh, S.: Performance of Stein - rule Procedure for simultaneous prediction of actual and average values of study variable in linear regression model. Bull. Int. Statist. Inst. 56 (1995), 1375-1390.
[22] Shalabh, S., Toutenburg, H., Heumann, C.: Stein-rule estimation under an extended balanced loss function. J. Statist. Comput. Simul. 79 (2009), 1259-1273. | DOI
[23] St\k{e}pniak, C.: Admissible invariant estimators in a linear model. Kybernetika 50 (2014), 310-321.
[24] Synówka-Bejenka, E., Zontek, S.: On admissibility of linear estimators in models with finitely generated parameter space. Kybernetika (2016), 724-734.
[25] Xu, X., Wu, Q.: Linearly admissible estimators of regression coefficient under balanced loss. Acta Math. Sci. 20 (2000), 468-473.
[26] Lu, C. Y., Shi, N. Z.: Admissible linear estimators in linear models with respect to inequality constraints. Linear Algebra Appl. 354 (2002), 187-194. | DOI
[27] Zellner, A.: Bayesian and Non-Bayesian Estimation Using Balanced Loss Functions. Statistical Decision Theory and Related Topics V, Springer, New York 1994, pp. 377-390.
Cité par Sources :