A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes
Kybernetika, Tome 57 (2021) no. 3, pp. 426-445
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
For lower-semicontinuous and convex stochastic processes $Z_n$ and nonnegative random variables $\epsilon_n$ we investigate the pertaining random sets $A(Z_n,\epsilon_n)$ of all $\epsilon_n$-approximating minimizers of $Z_n$. It is shown that, if the finite dimensional distributions of the $Z_n$ converge to some $Z$ and if the $\epsilon_n$ converge in probability to some constant $c$, then the $A(Z_n,\epsilon_n)$ converge in distribution to $A(Z,c)$ in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.
For lower-semicontinuous and convex stochastic processes $Z_n$ and nonnegative random variables $\epsilon_n$ we investigate the pertaining random sets $A(Z_n,\epsilon_n)$ of all $\epsilon_n$-approximating minimizers of $Z_n$. It is shown that, if the finite dimensional distributions of the $Z_n$ converge to some $Z$ and if the $\epsilon_n$ converge in probability to some constant $c$, then the $A(Z_n,\epsilon_n)$ converge in distribution to $A(Z,c)$ in the hyperspace of Vietoris. As a simple corollary we obtain an extension of several argmin-theorems in the literature. In particular, in contrast to these argmin-theorems we do not require that the limit process has a unique minimizing point. In the non-unique case the limit-distribution is replaced by a Choquet-capacity.
DOI :
10.14736/kyb-2021-3-0426
Classification :
60B05, 60B10, 60F99
Keywords: convex stochastic processes; sets of approximating minimizers; weak convergence; Vietoris hyperspace topologies; Choquet-capacity
Keywords: convex stochastic processes; sets of approximating minimizers; weak convergence; Vietoris hyperspace topologies; Choquet-capacity
@article{10_14736_kyb_2021_3_0426,
author = {Ferger, Dietmar},
title = {A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes},
journal = {Kybernetika},
pages = {426--445},
year = {2021},
volume = {57},
number = {3},
doi = {10.14736/kyb-2021-3-0426},
mrnumber = {4299457},
zbl = {07442518},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-3-0426/}
}
TY - JOUR AU - Ferger, Dietmar TI - A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes JO - Kybernetika PY - 2021 SP - 426 EP - 445 VL - 57 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-3-0426/ DO - 10.14736/kyb-2021-3-0426 LA - en ID - 10_14736_kyb_2021_3_0426 ER -
%0 Journal Article %A Ferger, Dietmar %T A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes %J Kybernetika %D 2021 %P 426-445 %V 57 %N 3 %U http://geodesic.mathdoc.fr/articles/10.14736/kyb-2021-3-0426/ %R 10.14736/kyb-2021-3-0426 %G en %F 10_14736_kyb_2021_3_0426
Ferger, Dietmar. A continuous mapping theorem for the argmin-set functional with applications to convex stochastic processes. Kybernetika, Tome 57 (2021) no. 3, pp. 426-445. doi: 10.14736/kyb-2021-3-0426
Cité par Sources :